News

15.10.2019 – Molecular Electro-Opto-Spintronics

Molecular Electro-Opto-Spintronics

Molecular electronics originally promised miniaturization of molecular devices using Nature’s smallest building blocks to allow for novel electronic function by simply altering the chemical structure of the molecular component. Molecular electronics has evolved towards a complementary technology to silicon-based electronics, providing functionalities not possible with classical electronic devices. After more than 40 years of experiments, it remains a challenge to rationally design molecule-electrode junctions due the complex interplay between electronic structure and the chemical/supramolecular arrangement of the interfaces. Unlike traditional CMOS electronics, comprehensive design rules for molecular junctions are not available yet. Only bits and pieces have been published scattered across disciplines, including interface engineering, supramolecular chemistry, surface science, computational science, physics, chemistry, optics, biology and micro/nanofabrication.

Posted on | Posted in News

07.10.2019 – Antiferromagnetic Spintronics

Antiferromagnetic Spintronics: from topology to neuromorphic computing

The new field of antiferromagnetic spintronics focuses on making antiferromagnets active elements of spintronic devices. The higher complexity of the ordered phase and parameter space in antiferromagnets have given rise to new avenues of basic research that range from topological quasiparticle dynamic manipulation, multipole order effects, ultra-fast dynamics, and even applications towards neuromorphic computing and IoT.

The new field is of interest to the strongly correlated effects community and the community focused on topological matter. It has connected to the current ferromagnetic spintronics research by creating entirely new ways of rethinking spin phenomena in antiferromagnets, while benefiting from the pioneering works in antiferromagnetic materials.

Posted on | Posted in News

30.09.2019 – Young Research Leader Group Workshop

YRLGW: Topomagnetism Is Coming: Relativity and Correlations in Topological Magnets

Remarkable advances in strongly correlated and relativistic condensed matter physics have been made over the past decade by these largely non-interacting communities. Interestingly, their attention recently focused on the same grand challenges such as room-temperature quantum chiral edge modes, topological superconductivity, or topological computation.

The research of nonmagnetic materials culminated in predicting that approximately one third of them exhibit topological electronic structure. In contrast, the investigation of topological magnets is progressing at much slower pace albeit time-reversal symmetry broken topological phases demand magnetic order. For a long time, low-dimensional topological systems were anticipated to be naturally incompatible with robust magnetism. However, recent theoretical and experimental efforts have revealed low-dimensional as well as 3D topological insulators and Weyl semimetal magnets. The relativistic phenomena, e.g. the spin Hall, quantum spin Hall, or magnetic spin-Hall effect, were originally predicted within the single-particle picture. However, realistic predictions of magnetic materials, requires inclusion of the electronic correlations. Conversely, the correct description of strongly correlated magnets with high atomic numbers needs to include spin-orbit coupling phenomena.

Posted on | Posted in News

17.09.2019 – Skyrmionics Workshop for Young Researcher

Skyrmionics Workshop for Young Researcher

The recent interest skyrmionic materials have provided a new playground for the study of topological solitons. The topologically non-trivial magnetic spin textures can facilitate fast current-induced magnetization manipulation, which makes these exotic textures widely advantageous for many areas of technology, from spintronics to neuromorphic computing.

The current research effort is to detect, visualize, and manipulate the magnetic states: by momentum space mapping such as small angle neutron scattering, by real space detection such as Lorentz transmissions electron microscopy, by transport such as the topological Hall effect, and manipulation by external fields resulting in the skyrmion Hall effect. The extensive study of their transport properties and the ability to create a controlled environment for the creation and annihilation of magnetic skyrmions are essential steps towards the realization of skyrmion-based devices. Skyrmions can exist in a multitude of systems, bulk, multilayer heterostructures, and films with a variety of shapes due to the internal symmetry and the competition of exchange interactions. The increasing number of skyrmion hosting materials combined with the rapid growth of the research field provides a promising prospect to overcome the challenges for next-generation devices.

Posted on | Posted in News

07.07.2019 – Gordon Research Conference

Gordon Research Conference: Spin Transport and Dynamics in New Geometries, Materials and Nanostructures

In recent years the fields of spintronics has greatly expanded towards new materials, new functionalities, and new device concepts. In the new materials front, antiferromagnetic metallic and insulating systems have been shown to be effective transport media of spins, allowing for very high frequency applications and efficient electric control of the magnetic order parameter. There has also been a tremendous progress in the realization of magnetism in two dimensional materials, where new functionalities, such as spin valves, have been also demonstrated recently. Due to their spin-valley coupling these material systems also connect spins with photons. In addition, new forms of spin-orbit coupling have been discovered in magnetic and non-magnetic systems, connecting new materials with topological insulator and Weyl materials that promise new functionalities based on the control of these type of high-energy-like quasiparticles. A remaining materials frontier in spintronics is organic systems, which seems to be very different from solid state spintronics, exhibiting new chiral phenomena which remains to be fully understood. Finally, as an emergent new device concept, the conference will cover the area of neuromorphic computing in spintronics, where Skyrmions, and other spin systems, are being touted as future platforms for such type of brain-inspired devices.

Posted on | Posted in News

23.10.2018 – Ultrafast Spintronics

Ultrafast Spintronics: from Fundamentals to Technology

The 21st century digital economy and technology is presently facing fundamental scaling limits (heating and the superparamagnetic limit) as well as societal challenges: the move to mobile devices and the increasing demand of cloud storage leads to an enormous increase in energy consumption of our ICT infrastructure. These developments require new strategies and paradigm shifts, such as spin-based technologies and the introduction of photonic processors. Currently, photons are used for information transport, electrons for processing and spins for storage. Future developments will require integration of these separate technologies. Spintronic or spin-based memory such as Spin-torque transfer magnetic Random Access Memory (STT-RAM) is one concept that may revolutionize memory technology. The ability to control spins and macroscopic magnetic ordering by means of femtosecond laser pulses provides an alternative and energy efficient approach to magnetic recording. But this will only provide a novel and energy efficient alternative to current data storage if spintronics can be integrated with photonics. Such integration may also allow faster spin logic. Antiferromagnetic materials may provide another alternative for fast spintronics, but there are still many challenges. In this workshop we want to discuss recent developments in this exciting field as well as the challenges that lay ahead.

Posted on | Posted in News

08.10.2018 – Spintronics meets Neuromorphics

Spintronics meets Neuromorphics

An entire suite of novel Neuromorphic computational paradigms, taking inspiration from the functional properties of the brain, has emerged over the past two decades to address the need to efficiently process and analyze the exponential amount of data produced in our Information Age. Research on neural networks, reservoir computers and Boltzmann machines, has demonstrated that it is possible to perform complex computational tasks such as image and pattern recognition at a level comparable to that of a human. All proof-of-concepts have however relied mostly on digital implementations of their respective computational scheme. Whereas this has justified the importance of such techniques, their implementation into scalable and energy efficient analog electronic devices is still much of an open problem. The workshop “Spintronics meets Neuromorphics” aims to show how the challenges posed by neuromorphic computing paradigms can be addressed effectively with spintronics. The low-current tunability, thermal susceptibility and rich dynamics of magnetic thin-film heterostructures offer an ideal toolbox for implementing novel neuromorphic devices. Furthermore, progress in their material science guarantees that promising proof-of-concepts will have a high chance of proving scalable enough to afford industrial production.

Posted on | Posted in News

03.09.2018 – Joint European Magnetic Symposia

Joint European Magnetic Symposia 2018

JEMS covers a wide breadth of cutting-edge topics in magnetism and magnetic materials research, ranging from the fundamental to the applied. The topics cut across the entire field of magnetism, such as biomangetism applications, chiral magnetism and skyrmions, multiferroics, strongly correlated systems, topological magnetic materials, ultrafast optical spintronics, and magnonics.

The conference incorporates plenary and semi-plenary talks from internationally renowned speakers, representing the latest advances in magnetism. Attendees are also able to contribute to specific symposia through talks and poster sessions focused on their research topics.

Mainz and the Rheinpfalz region are important centers of magnetism research in Germany. The Kaiserslautern-Mainz collaborative center SPIN+X and the Spin Phenomena Interdisciplinary Center (SPICE) lead many of these efforts.

Posted on | Posted in News

10.07.2018 – Young Research Leaders Group Workshop

YRLG: Collective phenomena in driven quantum systems

The workshop explored situations in which non-equilibrium setups can provide information about many-body systems that cannot be accessed in conventional (linear-response based) probes. Systems of particular interest are materials with strongly competing or frustrated (by disorder, relativistic corrections or geometrical constrains) interactions, or those under extreme quantum conditions (traditionally, very low temperatures and/or very high magnetic fields). These circumstances favor the formation of phases characterized by some sort of topological order, revealing highly entangled ground states and exotic, but experimentally elusive, excitations. Topology provides also the unifying framework to describe the emergence of quantum coherence at the macroscopic scale. These current efforts in solid state goes hand by hand with the design and large-scale control of new types of synthetic quantum matter in driven optical and atomic systems.

Posted on | Posted in News

15.05.2018 – Spin Cavitronics

Spin Cavitronics

Cavity (quantum) electrodynamics, originally invented in order to enhance matter-light interaction in atomic physics, has developed into an ubiquitous technique to study condensed matter systems, such as semiconductor quantum dots, diamond NV centers, donor spins in silicon, Josephson-junction qubits, nanomechanical systems, etc. Recently, ferromagnets in cavities have been shown to hybridize with microwaves and (more weakly) with light photons. We observe now the emergence of the interdisciplinary field “Spin Cavitronics” that brings together the optical and microwave cavity communities with researchers from magnetism and spintronics, also involving superconductivity, plasmonics, phononics, mechanics, and AMO groups. The present workshop is intended to facilitate interaction between the leaders of these fields and lure prospective newbies.

Posted on | Posted in News