30.09.2019 – Young Research Leader Group Workshop

YRLGW: Topomagnetism Is Coming: Relativity and Correlations in Topological Magnets

Remarkable advances in strongly correlated and relativistic condensed matter physics have been made over the past decade by these largely non-interacting communities. Interestingly, their attention recently focused on the same grand challenges such as room-temperature quantum chiral edge modes, topological superconductivity, or topological computation.

The research of nonmagnetic materials culminated in predicting that approximately one third of them exhibit topological electronic structure. In contrast, the investigation of topological magnets is progressing at much slower pace albeit time-reversal symmetry broken topological phases demand magnetic order. For a long time, low-dimensional topological systems were anticipated to be naturally incompatible with robust magnetism. However, recent theoretical and experimental efforts have revealed low-dimensional as well as 3D topological insulators and Weyl semimetal magnets. The relativistic phenomena, e.g. the spin Hall, quantum spin Hall, or magnetic spin-Hall effect, were originally predicted within the single-particle picture. However, realistic predictions of magnetic materials, requires inclusion of the electronic correlations. Conversely, the correct description of strongly correlated magnets with high atomic numbers needs to include spin-orbit coupling phenomena.

Posted on | Posted in News