News and posts
MemComputing: leveraging physics to compute efficiently
Skyrmions based Neurmorphic Computing
Time: Tuesday, October 9th, 14:00
Speaker: Weisheng ZHAO, Beihang University
Recently, magnetic skyrmion, a swirling topological spin configuration, has been studied as a promising information carrier candidate in future ultra-dense, low-power memory and logic devices for its outstanding merits of nanoscale size, low depinning current density, high motion velocity and particle-like stability etc. One of the most potential applications is to design racetrack memory. One the other hand, we exploit the dynamics of skyrmions to design neuromorphic computing.
Computing with Spin-Wave Solitons
[2] F. Macià et al. Nanotechnology 25, 045303 (2014)
[3] F.C. Hoppensteadt, US Patent 9,582,695 (2018)
[4] F Hoppensteadt, Biosystems 136, 99-104 (2017)
[5] V. Flovick et al Scientific Reports, 6, 32528 (2016)
[6] S. M. Mohseni et al., Science 339, 1295 (2013)
[7] F. Macià et al. Nature Nanotech. (2014)
[8] J.Hang et al. Scientific Reports 8, 6847, (2018)
[9] N. Statuto et al. Nanotechnology, 29, 325302 (2018)
Mutually synchronized spin Hall nano-oscillator arrays
Time: Tuesday, October 9th, 10:10
Speaker: Johan AKERMAN, Gothenburg University
Spin Hall nano-oscillators (SHNOs) [1] are an emerging class of nano-scopic microwave signal generators with potential for new disruptive applications ranging from microwave signal generation/detection to neuromorphic computing [2,3]. SHNOs are based on an intrinsic magnetodynamic resonance with frequencies in the GHz range, which depends on material parameters, device layout, and external parameters such as magnetic field and drive current. For sufficiently high current densities, the resonance can be driven into a state of coherent auto-oscillation. Through the magnetoresistance of the device, the auto-oscillation can be used to generate a current- and field-tunable microwave voltage.
The auto-oscillation state is highly non-linear in nature, and neighbouring SHNOs can therefore interact with each other and even mutually synchronize, which further increases the power and coherence of the microwave signal [4]. This is important, as the nano-scale volume of the auto-oscillating spin wave mode is susceptible to thermal noise, leading to detrimental phase noise in the microwave signal. I will present resent results on long chains of SHNOs and the first two-dimensional SHNO arrays. We demonstrate robust mutual synchronization in chains or 21 SHNOs with record quality factors of Q=f/df of 30,000. We also demonstrate robust mutual synchronization in two-dimensional arrays of as many as 8 x 8 = 64 SHNOs. We find that the linewidth of these arrays decreases linearly with the number of SHNOs, which enables us to reach Q factors as high as 170,000, i.e. an order of magnitude higher than literature values. Based on these results I will argue that a viable path towards commercial microwave signal generators based on spintronic devices must be based on mutually synchronized SHNO arrays.
The mutual synchronization phenomenon can also be used for ultra-fast pattern matching with potential for speeding up image recognition by orders of magnitude. With the recent rapidly increasing interest in artificial intelligence and neuromorphic computing, mutually synchronized SHNO chains and arrays hence represent a highly attractive emerging technology platform for low-power, and ultrafast non-conventional computing.
References
[1] T. Chen, et al, Proc. IEEE 104, 1919 (2016).
[2] J. Grollier, D. Querlioz, and M. Stiles, Proc. IEEE 104, 2024 (2016).
[3] J. Torrejon et al., Nature 547, 428 (2017)
[4] A. A. Awad et al. Nature Physics 13, 292 (2017).
[5] M. Zahedinejad et al. unpublished (2018).
Tutorial: Manipulating Magnetic Skyrmions
This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. [1] W. Jiang, et al., Phys. Rep. 704, 1 (2017).
[2] W. Jiang, et al., Science 349, 283 (2015).
[3] O. Heinonen, et al., Phys. Rev. B 93, 094407 (2016).
[4] W. Jiang, et al., Nature Phys. 13, 162 (2017).
Tutorial: Computing with magnetic dots and spintronic dynamical systems
Hardware ANNs using MTJ-based memories
Tutorial: Reinforcement Learning
Tutorial: The Landscape of Deep Learning: a Quick Overview
All-optical switching and brain-inspired concepts for low energy information processing
Time: Monday, October 8th, 14:00
Speaker: Theo RASING, Radboud University
The explosive growth of big data and artificial intelligence offers a huge potential for new digital products and unexplored business models. While data has become an indispensable part of modern society, the sheer amount of data being generated every second is breathtaking, both in its scale and in its growth, while the number of devices generating these data is rapidly expanding. This not only pushes current technologies to their limits, but also that of our energy production: our ICT and data centres already consume around 7% of the world’s electricity production and with the growth rate of ICT-technologies, this energy consumption is rapidly becoming unsustainable. In stark contrast, the human brain, with its intricate architecture combining both processing and storing of information, only consumes about 10 Watt of energy while having a similar capacity as a supercomputer consuming around 10 Megawatt.
We try to develop materials and concepts that mimic the efficiency of the brain by combining local processing and storage, using adaptable physical interactions that can implement learning algorithms. We demonstrate, by modelling, that a reconfigurable and self-learning structure can be achieved, which implements the prototype perceptron model of a neural network based on magneto-optical interactions. Importantly, we show that optimization of synaptic weights is achieved by a global feedback mechanism, such that learning does not rely on external storage or additional optimization schemes. For the experimental realization of adaptive synaptic structures, we choose to use optically controllable magnetization in a thin Co/Pt film1, using circularly polarized picosecond2 pulse trains. The combined stochastic/deterministic nature of all-optical switching in this material2 offers the possibility to continuously vary the magneto-optical Faraday rotation with the number of pulses, yielding the necessary ingredient to realize a perceptron-like structure. First results of such a learning structure will be demonstrated.
1. C.-H. Lambert et al, Science 345, 1337 (2014)
2. R. Medapalli et al, Phys. Rev.B 96, 224421 (2017)