Author: ehilp

On-line SPICE-SPIN+X Seminars

On-line Seminar: 09.04.2025 - 15:00 CEST

van der Waals Magnets and Antiferromagnets Interacting with Electron Spins

Daniel Ralph, Cornell University

This talk will discuss two projects. The first concerns topological insulator/magnet samples made by mechanical stacking of exfoliated van der Waals flakes. The proximity interaction of the magnet with the topological surface state allows realization of the “parity anomaly” half-quantized Hall effect state at temperatures as high as 10 K -- the first materials system with a quantized anomalous Hall signal well above liquid-helium temperature. Direct capacitive measurements also indicate a large value of the exchange gap of approximately 10 meV. We speculate the reason for the higher temperature scale compared to previous topological insulator/magnet samples deposited by molecular beam epitaxy is that even a small amount of disorder due to interfacial mixing in deposited samples can push the topological surface state away from the interface and thereby weaken the exchange coupling to the magnet. The pristine interfaces formed by mechanical stacking of van der Waals layers eliminate this intermixing.

The second project concerns 3-terminal tunnel junctions (PtTe2/bilayer CrSBr/graphite) in which the A-type van der Waals antiferromagnet CrSBr acts as the tunnel barrier. Spin-filter tunneling through the CrSBr bilayer allows direct electrical measurements of antiferromagnetic resonance in the frequency domain. Furthermore, spin-orbit torque from the PtTe2 electrode provides electrically-tunable control over the magnetic damping and resonance linewidth. We find the interesting result that the spin-orbit torque is highly local, with the spin current from the PtTe2 electrode acting only on the individual spin sublattice layer adjacent to that electrode, with a negligible amount propagating to the next van der Waals layer.

 

Please sign up here in order to get the Zoom link and regular announcements of the upcoming talks.
PDF file of the talk available here

On-line SPICE-SPIN+X Seminars

On-line Seminar: 07.02.2024 - 15:00 CET

Magnon-exciton coupling in a magnetic semiconductor

Youn Jue Bae, Cornell

While magnons and excitons are energetically mismatched by orders of magnitude, their coupling can lead to efficient optical access to spin information. The ability to overcome energy mismatch between magnon and exciton combined with optical excitation and detection renders 2D magnetic semiconductors attractive candidates in quantum transducers. In this presentation, I will discuss strong magneto-electronic and magnetoelastic coupling and the implications of these couplings in the 2D van der Waals antiferromagnetic semiconductor, CrSBr. Because of both magnetic and semiconducting properties in CrSBr, excitons are highly sensitive to spin environments. Optical excitation of coherent spin waves can dynamically modulate the dielectric environment and we can probe excitons to obtain spin information. I will also discuss strong magnetoelastic coupling in CrSBr that induces transient strain fields to selectively launch a narrow range of wavevector and frequency of both coherent magnons and acoustic phonons.

Please sign up here in order to get the Zoom link and regular announcements of the upcoming talks.

On-line SPICE-SPIN+X Seminars

On-line Seminar: 13.12.2023 - 15:00 CET

First-principles calculations of spin transport and spin-orbit torque in metallic heterostructures

Kirill Belashchenko, University of Nebraska–Lincoln

I will discuss first-principles calculations of spin transport and spin-orbit torques in disordered films and multilayers within the nonequilibrium Green's function technique with supercell disorder averaging. I will present the results for ferromagnet/nonmagnet bilayers, for a single platinum film, and for ferromagnet/nonmagnet/ferromagnet trilayers, highlighting the features that can't be easily explained within the conventional spin-diffusion model. I will also discuss the possibility of using ferromagnets with anisotropic transport spin polarization as sources of exchange-driven transverse spin current, supported by a computational screening of suitable materials.

Please sign up here in order to get the Zoom link and regular announcements of the upcoming talks.

PDF file of the talk available here

On-line SPICE-SPIN+X Seminars

On-line Seminar: 01.06.2022 - 15:00 German Time

Domain walls and skyrmions: From ferromagnets to ferrimagnets

Geoffrey Stephen Beach, MIT

Tremendous progress has been made in engineering highly mobile domain walls and skyrmions in room temperature materials for racetrack-based applications. Most recent efforts have focused on heavy-metal/ferromagnet heterostructures with Dzyaloshinskii-Moriya interactions and spin-orbit torques, in which chiral domain walls and skyrmions can be stabilized at room temperature and readily manipulated [1,2]. However, ferromagnets possess fundamental limitations on spin texture speed and size owing to stray fields and precessional dynamics [3]. Antiferromagnets, on the other hand, possess no stray fields, and are angular-momentum-compensated, yielding extremely fast dynamics. Ferrimagnets exhibit similar behaviors at compensation, but are more readily probed since the individually sublattices are detectible and addressable owing to the fact that the electronic and optical properties of the elements on these sites are typically different. Here, I describe ferrimagnetic spin textures and dynamics in metallic and insulating ferrimagnets. Using Pt/GdCo/TaOx films with sizable Dzyaloshinskii-Moriya interaction, we realize current-driven domain wall motion with a speed of 1.3 km/s near the angular momentum compensation temperature (TA) and room-temperature stable skyrmions with minimum diameters close to 10 nm near magnetic compensation (TM) [4]. By using temperature as a knob, the roles of compensation on the dynamics can be clearly extracted. I then describe recent work on insulating magnetic garnets with perpendicular anisotropy, in which we have discovered an interfacial Dzyaloshinskii-Moriya interaction [5,6] which, combined with low damping and pure spin current injection mediated by a Pt overlayer [7], leads to exceptionally fast motion at extremely low current densities [8]. Finally, I will discuss all-optical manipulation of skyrmions using ultrafast laser excitations, including picosecond generation of topological charge [9] tracked in real time via single-shot soft x-ray scattering, and all-optical writing, deleting, and two-dimensional steering of skyrmions by light alone [10]. Recent progress and future directions in these areas will be discussed.

[1] S. Emori, et al., Nature Mater. 12, 611 (2013)
[2] S. Woo, et al., Nature Mater. 15, 501 (2016)
[3] F. Büttner, et al., Sci. Rep. 8, 4464 (2018)
[4] L. Caretta, et al., Nature Nano. 13, 1154 (2018)
[5] C. O. Avci, et al., Nat. Mater. 14, 561 (2019)
[6] L. Caretta, et al., Nat. Comm. 11, 1090 (2020)
[7] C.O. Avci, et al., Nature Mater. 16, 309 (2017)
[8] L. Caretta, et al., Science 18, 1438 (2020)
[9] F. Buttner, et al., Nat. Mater. 20, 30 (2021)
[10] L. Caretta, et al., to be submitted (2020)

Please sign up here in order to get the Zoom link and regular announcements of the upcoming talks.
 

On-line SPICE-SPIN+X Seminars

On-line Seminar: 13.01.2021 - 15:00 German Time

Chirality Induced Spin Selectivity: Open questions and challenges

Bart van Wees, University of Groningen

The phenomenon of chirality induced spin selectivity (CISS) has been known for over two decades [1]. A strong coupling between spin and charge transport has been observed, which depends on the chirality (or helicity) of the molecules. These systems are non-magnetic, so the origin of CISS must lay in manifestations of the spin-orbit interaction between moving electrons and the chirality induced electric fields present in the chiral systems.
In this talk I will give an overview of the manifestations of chirality in nature, as well as the experimental status of CISS in electronic and spintronic transport experiments. In particular I focus on experiments where CISS is observed as a spin-valve magneto resistance (MR) in two-terminal devices, where a ferromagnet is used to polarize or analyze the spins transmitted through the chiral systems. I will discuss our recent theory work, where we emphasize the important symmetry differences between the spin-charge coupling in ferromagnets, which breaks time reversal symmetry, and in (non-magnetic) chiral systems, which preserves time reversal symmetry. This prohibits the observation of CISS induced MR in two-terminal systems (but still allows it in multiterminal devices)[2]. Experiments on CISS also explore the non-linear transport regime, where voltage biases are employed which exceed the thermal energy. In this regime a CISS induced MR is possible. However, its sign depends not only on the chirality, but also on the nature of the transport through the ferromagnet and chiral system[3].
Finally I will discuss a possible connection between the absence/presence of CISS induced MR in electronic transport measurements with experiments which demonstrated magnetization/magnetic field self-assembly of chiral molecules. [4].
[1] K. Ray, S.P. Ananthavel, D.H. Waldeck, R. Naaman, Asymmetric scattering of Polarized electrons by organized organic films made of chiral molecules, Science, 283, 814 (1999).
[2] X. Yang, C.H. van der Wal, and B.J. van Wees, Spin-dependent electron transmission model for chiral molecules in mesoscopic devices, Phys. Rev. B 99, 024418 (2019)
[3] X. Yang, C. H. van der Wal, and B. J. van Wees, Detecting Chirality in Two-Terminal Electronic Nanodevices, Nano Lett. 20, 8, 6148–6154 (2020)
[4] K. Banerjee Kosh et al., Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates, Science 10 May (2018)

PDF file of the talk available here

 

On-line SPICE-SPIN+X Seminars

On-line Seminar: 11.11.2020 - 15:00 (CET)

Old 2degs with new tricks: Antiferromagnetic order and magnetoelectricity of 2D charge carriers

Ulrich Zuelicke, Victoria University of Wellington

In magnetoelectric media, an electric field can induce a magnetization and a magnetic field can induce an electric polarization, while the system remains in thermal equilibrium.  This effect requires that both space-inversion and time-reversal symmetry are broken.  I will present a comprehensive theory for magnetoelectricity in magnetically ordered quasi-2D systems.  Considering ferromagnetic (FM) zincblende and antiferromagnetic (AFM) diamond structures, quantitative expressions for the magnetoelectric responses due to electric and magnetic fields are obtained that reveal explicitly the inherent duality of these responses required by thermodynamics.  The magnitude of magnetoelectric effects in quasi-2D systems is tunable, and typical values are sizable in quasi-2D hole systems where moderate electric fields can induce a magnetic moment of one Bohr magneton per charge carrier.  For the microscopic understanding of magnetoelectric responses in these systems,  AFM order plays a central role.  We define a Néel operator t that describes AFM order, in the same way a magnetization mreflects FM order.  While m is even under space inversion and odd under time reversal, t describes a toroidal moment that is odd under both symmetries. Thus m and t quantify complementary aspects of magnetic order in solids.  In quasi-2D systems, FM order can be attributed to dipolar equilibrium currents that give rise to a magnetization.  In the same way, AFM order arises from quadrupolar currents that generate the toroidal moment.  The electric-field-induced magnetization can then be attributed to the electric manipulation of the quadrupolar currents.  Our theory provides a broad framework for the manipulation of magnetic order by means of external fields.

PDF file of the talk available here

 

Poster Session

 

Poster 1 Uriel Aceves Forschungszentrum Jülich In-gap states emerging from magnetic nanostructures deposited on superconductors
Poster 2 Armando Aligia Centro Atomico Bariloche, Argentina Tomography of zero-energy end modes in topological superconducting wires
Poster 3 Daniil Antonenko Skoltech / Landau Institute Mesoscopic conductance fluctuations and noise in disordered Majorana wires
Poster 4 Ryo Araki Department of Physics, Kyoto University Anisotropy of the upper critical field of Sr2RuO4 under in-plane magnetic field and current
Poster 5 Olga Arroyo Instituto de Ciencia de Materiales de Madrid One-Dimensional Moiré Superlattices and Magic Angle Physics in Collapsed Chiral Carbon Nanotubes
Poster 6 Thomas Baker Institut quantique (UniversitÈ de Sherbrooke) Role of canting and depleted-triplet minima in superconducting spin valve structures
Poster 7 Harry Bradshaw University of Cambridge Infinite Magnetoresistance at a Rare Earth Ferromagnet / Superconductor Interface
Poster 8 David Cavanagh The University of Otago Robustness of unconventional s-wave superconducting states against disorder
Poster 9 Ashley Cook Max-Planck-Institut fuer Physik komplexer Systeme Topological skyrmion phases of matter
Poster 10 Folkert de Vries ETH Zürich, Laboratory of Solid State Physics Interlayer scattering in twisted double bilayer graphene
Poster 11 Juan Carlos Estrada Saldaña University of Copenhagen Non-trivial effects in “trivial” hybrid nanowire-superconductor devices
Poster 12 Remko Fermin Universiteit Leiden Spontaneous emergence of Josephson junctions in homogeneous rings of single-crystal Sr2RuO4
Poster 13 Victor Fernandez-Becerra Institute of Physics, Polish Academy of Sciences Topological charge, spin and heat transistor
Poster 14 Yuri Fukaya Nagoya University Orbital tunable 0-π transitions in Josephson junctions with noncentrosymmetric topological superconductors
Poster 15 Shreenanda Ghosh Technical University of Dresden, Germany Manipulation of time reversal symmetry breaking superconductivity in Sr2RuO4 by uniaxial stress
Poster 16 Ruben Gracia Instituto de Nanociencia y Materiales de Aragûn Robust Weak-Antilocalization effect in Bi2Se3 thin films
Poster 17 Vadim Grinenko TU Dresden s+is superconductivity in Ba1-xKxFe2As2
Poster 18 Yajian Hu Kyoto University Detection of hole pockets in the candidate type-II Weyl semimetal MoTe2 from Shubnikov-de Haas quantum oscillations
Poster 19 Shota Kanasugi Kyoto University Multiorbital odd-frequency pairing in a ferroelectric superconductor SrTiO3

 

Second Order Topological Superconductivity: Majorana and parafermion corner states

Jelena Klinovaja

 

Recently, a lot of interest has been raised by the generalization of conventional TIs/TSCs to so-called higher order TIs/TSCs. While a conventional d-dimensional TI/TSC exhibits (d − 1)-dimensional gapless boundary modes, a d-dimensional n-th order TI/TSC hosts gapless modes at its (d − n)-dimensional boundaries. In my talk, I will consider a Josephson junction bilayer consisting of two tunnel-coupled two-dimensional electron gas layers with Rashba spin-orbit interaction, proximitized by a top and bottom s-wave superconductor with phase difference φ close to π [1-3]. In the presence of a finite weak in-plane Zeeman field, the bilayer can be driven into a second order topological superconducting phase, hosting two Majorana corner states (MCSs). If φ=π, in a rectangular geometry, these zero-energy bound states are located at two opposite corners determined by the direction of the Zeeman field. If the phase difference φ deviates from π by a critical value, one of the two MCSs gets relocated to an adjacent corner. As the phase difference φ increases further, the system becomes trivially gapped. The obtained MCSs are robust against static and magnetic disorder.

In the second part of my talk, I will switch from non-interacting systems [4,5], in which one neglects effects of strong electron-electron interactions, to interacting systems and, thus, to exotic fractional phases. I will show that this is indeed possible and explicitly construct a two-dimensional (2D) fractional second-order TSC. I will consider a system of weakly coupled Rashba nanowires in the strong spin-orbit interaction (SOI) regime. The nanowires are arranged into two tunnel-coupled layers proximitized by a top and bottom superconductor such that the superconducting phase difference between them is π. In such a system, strong electron- electron interactions can stabilize a helical topological superconducting phase hosting Kramers partners of Z_2m parafermion edge modes, where m is an odd integer determined by the position of the chemical potential. Furthermore, upon turning on a weak in-plane magnetic field, the system is driven into a second- order topological superconducting phase hosting zero-energy Z_2m parafermion bound states localized at two opposite corners of a rectangular sample.

References

[1] Y. Volpez, D. Loss, and J. Klinovaja, Phys. Rev. Lett. 122,126402 (2019)

[2] K. Plekhanov, M. Thakurathi, D. Loss, and J. Klinovaja, Phys. Rev. Research 1, 032013(R) (2019)

[3] K. Plekhanov, N. Müller, Y. Volpez, D. M. Kennes, H. Schoeller, D. Loss, and J. Klinovaja, arXiv:2008.03611

[4] K. Laubscher, D. Loss, and J. Klinovaja, Phys. Rev. Research 1, 032017(R) (2019)
[5] K. Laubscher, D. Loss, and J. Klinovaja, Phys. Rev. Research 2, 013330 (2020)

Two-dimensional Topological Superconductivity

Eun-Ah Kim

One could envision different strategies for designing topological superconductivity. One strategy would be to restrict the phase space in the kinetic energy by manipulating the band structure. Another strategy would be to restrict the pairing interaction. I will our proposals following each of these strategies. For the band-structure manipulation, I will discuss the prediction of p-wave superconductivity in p-doped TMD's with intermediate interaction. I will also discuss the competition for the surface state among multiple topological orders in FeSeTe. For the strategy of manipulating pairing interaction, I will discuss our proposal of using a metal-quantum paramagnet heterostructure.

On-line SPICE-SPIN+X Seminars

On-line Seminar: 14.10.2020 - 15:00 (CET)

Current fluctuations driven by ferromagnetic and antiferromagnetic resonance

Arne Brataas, NTNU Trondheim

When spins in magnetic materials precess, they emit currents into the surrounding conductors. We will explain how dynamical magnets also induce current noise. The shot noise characterizes and detects magnetic resonance and new aspects of electron transport in magnetic nanostructures.

We generalize the description of current fluctuations driven by spin dynamics in three ways using scattering theory. First, our approach describes a general junction with any given electron scattering properties. Second, we consider antiferromagnets as well as ferromagnets. Third, we treat multiterminal devices.

We give results for various junctions, such as ballistic and disordered contacts. Finally, we discuss the experimental consequences.

PDF file of the talk available here