Tomas Jungwirth
Tomas Jungwirth1, 2, 3
1Institute of Physics, Czech Academy of Sciences, Czech Republic
2School of Physics and Astronomy, University of Nottingham, United Kingdom
3Center for Science and Innovation in Spintronics, Tohoku University, Japan
The research landscape of magnetism has been recently enriched by the discovery of altermagnetism. It is an unconventional phase of matter characterized by a d-wave (or higher even- parity-wave) collinear compensated spin ordering, which enables strongly spin-polarized currents in the absence of magnetization, and features fast spin dynamics. Simultaneously, on the applied magnetism front, spintronic memories based on conventional ferromagnets are currently turning from a niche to a mass produced integrated-circuit technology as they start to complement semiconductors on advanced-node microprocessor chips. The talk will connect these two rapidly developing science and technology fields by discussing how the unique signatures of altermagnetism can impact the functionality and scalability of future spintronic devices. As a reference, we first briefly recall the merits and physical limitations of the present ferromagnetic spintronic technology, and of proof-of-concept spintronic devices based on conventional collinear antiferromagnets and non-collinear compensated magnets. The main part of the talk then focuses on physical concepts of the altermagnetic spintronics, and its potential interplay with ferroelectricity or superconductivity. We conclude with an outlook on the nascent experimental research of altermagnetic spintronics, and on the role of relativistic phenomena.
References
[1] L. Šmejkal, R. González-Hernández, T. Jungwirth, J. Sinova, Science Adv. 6, eaaz8809 (2020)
[2] R. González-Hernández, L. Šmejkal, K. Výborný, Y. Yahagi, J. Sinova, T. Jungwirth, J. Železný, Phys. Rev. Lett. 126, 127701 (2021)
[3] Z. Feng, T. Jungwirth et al., Nature Electron. 5, 735 (2022)
[4] L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, T. Jungwirth, Nature Rev. Mater. 7, 482 (2022)
[5] L. Šmejkal, J. Sinova, T. Jungwirth, Phys. Rev. X 12, 011028 (2022)
[6] L. Šmejkal, J. Sinova, T. Jungwirth, Phys. Rev. X 12, 031042 (2022)
[7] L. Šmejkal, J. Sinova, T. Jungwirth, Phys. Rev. X 12, 040501 (2022)
[8] R. González-Hernández, T. Jungwirth et al., Phys. Rev. Lett. 130, 036702 (2023)
[9] J. Krempaský, T. Jungwirth et al., Nature 626, 517 (2024)
[10] O. J. Amin, T. Jungwirth et al., Nature 636, 348 (2024)
[11] H. Reichlová, T. Jungwirth et al., Nature Commun. 15, 4961 (2024)
[12] A. Baďura, T. Jungwirth et al., Nature Commun. 16, 7111 (2025)
[13] T. Jungwirth, R. M. Fernandes, E. Fradkin, A. H. MacDonald, J. Sinova, L. Šmejkal, Newton 1, 100162 (2025).
[14] T. Jungwirth, J. Sinova, R. M. Fernandes, Q. Liu, H. Watanabe, S. Murakami, S. Nakatsuji, L. Šmejkal, arXiv: 2506.22860
[15] T. Jungwirth, J. Sinova, P. Wadley, D. Kriegner, H. Reichlová, F. Krizek, H. Ohno, L. Šmejkal, arXiv: 2508.09748