Characterization and control of quantum materials with optical vortex beams
The fascinating physics of optical vortices, in particular light carrying orbital angular momentum (OAM), has resulted in a large interest and currently OAM light can be generated with high precision in a wide photon energy range. Consequently, also the interplay between optical vortices and matter has been investigated in a broad range of phases, from atoms and molecules to solids and plasmas. For example, the study of optical transitions in semiconductors nicely showed the increased complexity of the allowed optical transitions and how the OAM is transferred to the system. This workshop aims to take this a step further and explore how optical vortices can be used to characterize and control complex quantum materials. Through this workshop, it is foreseen to form and bring together a community and form an overview of current and future research endeavors.
Given the exploratory character, the scope of the workshop is purposely kept broad and topics can include, but are not limited to, the following:
• interaction of vortex beams with quantum condensates
• interaction/coupling of the Berry phase associated with the optical OAM vortex with the topological Berry phase in condensed matter
• inducing quantum phase transitions with OAM
• measuring and driving hidden order with vortex beams
• generation and characterization of chiral bosonic modes
For videos of the talks and further information, please visit the workshop home page.