On-line SPICE-SPIN+X Seminars

On-line Seminar: 13.03.2024 - 15:00 CET

Spin-Orbit torque driven antiferromagnetic oscillator

Joerg Wunderlich, University of Regensburg

P. K. Rout1, J. Godinho1, F. Vilsmeier2, R. Salikhov3, Z. Soban4, R. M. Otxoa5, C. Back2, O. Hellwig3,6, J. Wunderlich1,4

Antiferromagnetic materials have unique properties due to their alternating exchange-coupled magnetic moment arrangements, leading to exchange-field enhanced fast and complex spin dynamics. Most intriguingly, excitation in antiferromagnets with locally broken inversion symmetry can be realized by current-induced spin-orbit torque (SOT), and complex self-oscillation modes near the critical spin-flop transition have been predicted when excited by antidamping SOT.
In this work, we realize an antiferromagnetic oscillator within a nanoconstriction patterned from a synthetic antiferromagnetic (SAF) multilayer. By exploiting the magnetic rectification effect (MRE), we first identify spin-orbit torque-driven excitations of optical and acoustic antiferromagnetic modes. Then, by adding a DC current to our radiofrequency excitation, we identify damping and anti-damping like SOT contributions by both MRE and Brillouin light scattering (BLS). Using spatially and temporally resolved magneto-optical Kerr effect (tr-MOKE) measurements, we observe pi-phase shifted current-induced oscillations of the Néel order in individual reversed antiferromagnetic domains at zero applied magnetic field. Finally we find first indications of self-oscillations near the critical spin-flop transition by MRE measurements, which appear only for DC currents above a critical current density.

1 University of Regensburg (Germany)
2 Technical University of Munich (Germany)
3 Helmholtz-Zentrum Dresden-Rossendorf (Germany)
4 Institute of Physics, Czech Academy of Sciences, Prague, (Czech Republic)
5 Hitachi Cambridge Labyoratory, Cambridge (United Kingdom)
6 Chemnitz University of Technology (Germany)

Please sign up here in order to get the Zoom link and regular announcements of the upcoming talks.