On-line SPICE-SPIN+X Seminars

On-line Seminar: 22.11.2023 - 15:00 CET

Spin transport in graphene-based van der Waals heterostructures

Talieh Ghiasi, Harvard

Decades of research in graphene nanodevices have shown that graphene is an excellent material for charge and spin transport thanks to its high charge carrier mobility and long spin lifetime. However, practical applications of graphene-based spintronic devices require efficient electrical control of the spin information. This sought-after goal is now achievable through the proximity of graphene to other two-dimensional materials in van der Waals heterostructures. In this talk, I will show how we enrich the properties of graphene by the proximity effect and induce coupling between charges and spins via spin-orbit [1, 2] and exchange [3, 4] interactions.

These interactions result in the emergence of various unprecedented phenomena in graphene that showcase its active role in generating spin currents, both electrically and thermally [3, 4]. We further explore quantum Hall transport in proximitized graphene aiming to achieve quantum coherent spin propagation in these heterostructures. These experimental advancements in spin-related functionalities of graphene-based nanodevices can have potential applications in future ultra-compact memory and computing systems.

[1] Ghiasi, TS, et al. Nano Letters 17, 7528 (2017)
[2] Ghiasi, TS, et al. Nano Letters 19, 5959 (2019)
[3] Ghiasi, TS, et al. Nature Nanotechnology 16, 788 (2021)
[4] Kaverzin, AA, et al. 2D Materials 9, 045003 (2022)

Please sign up here in order to get the Zoom link and regular announcements of the upcoming talks.