05.11.2021 – Dissipative Phases of Entangled Quantum Matter

Driven-dissipative quantum many body systems constitute a cross- disciplinary frontier of research encompassing condensed matter, AMO and solid state physics. Many-particle systems where quantum coherent dynamics and dissipative effects occur on the same footing, find experimental realization in cavity QED, driven open Rydberg systems, trapped ions, exciton-polariton condensates, coupled micro- cavity arrays — among the others.
These platforms offer the unique opportunity to explore extensive phases of matter which cannot be encompassed through conventional statistical mechanics. At the same time they pose a number of fundamental and technical challenges. The ubiquitous intrusive effect of dissipation in experiments, confronts researchers to optimize and enhance the role of quantum fluctuations in strongly noisy and decoherent environments. At the same time, an efficient simulation of open many-particle systems require a formidable combination of techniques and expertise ranging from advanced field theoretical methods to forefront numerical techniques, from machine learning to non-unitary versions of techniques from the field of strongly correlated systems.
These 3-days workshop will bring together a number of experts from a diverse and interdisciplinary set of fields, including condensed matter physics, cold atoms, quantum engineering, quantum optics, atomic and solid state physics, with a broad selection of experimentalists from currently active fields. Ample space will be devoted to the participation of emergent and promising young scholars with dedicated flash talks in a 'March Meeting' format. Furthermore, the workshop hosted two topical sessions to foster dialogue among researchers belonging to different sub-communities.

Posted on | Posted in News