Spin transport in magnetic 2D materials and heterostructures

Wei Han

 

The two-dimensional (2D) van der Waals magnets have provided new platforms for exploring quantum magnetism in the flatland and for designing 2D ferromagnet-based spintronics devices.

 

In this talk, I will discuss the spin transport in magnetic 2D materials and their heterostructures. Firstly, I will discuss magnon-mediated spin transport in an insulating 2D van der Waals antiferromagnetic MnPS3. Long distance magnon transport over several micrometers is observed in quasi-2D MnPS3. The transport of magnons could be described using magnon-dependent chemical potential, and long magnon relaxation length of several micrometers are obtained. Then, I will discuss the spin transport in a metallic 2D van der Waals ferromagnetic Fe0.29TaS2 and its heterostructures. Via systematically measuring Fe0.29TaS2 devices with different thickness, it is found that the dominant AHE mechanism is skew scattering in bulk single crystal, and the contribution from intrinsic mechanism emerges and become more relevant as the Fe0.29TaS2 thickness decrease. The spin-dependent scattering at the Fe0.29TaS2/superconductor interface will be also discussed, which reveals a large magnetoresistance that can be explained by the anisotropic Andreev reflection.