van der Waals layered magnetic semiconductors

Young Hee Lee

 

The ferromagnetic state in van der Waals two-dimensional (2D) materials has been reported recently in the monolayer limit. Intrinsic CrI3 and CrGeTe3 semiconductors reveal ferromagnetism but the Tc is still low below 60K. In contrast, monolayer VSe2 is ferromagnetic metal with Tc above room temperature but incapable of controlling its carrier density. Moreover, the long-range ferromagnetic order in doped diluted chalcogenide semiconductors has not been demonstrated at room temperature. The key research target is to realize the long-range order ferromagnetism, Tc over room temperature, and semiconductor with gate tunability. Here, Ferromagnetic order is manifested using magnetic force microscopy up to 360K, while retaining high on/off current ratio of ~105 at 0.1% V-doping concentration. The V-substitution to W siteskeep a V-V separation distance of 5 nm without V-V aggregation, scrutinized by high-resolution scanning transmission-electron-microscopy. More importantly, the ferromagnetic order is clearly modulated by applying a back gate. We also observe a ferromagnetic hysteresis loop together with oscillatory behavior at room temperature in diluted V-doped WSe2, while maintaining the semiconducting characteristic of WSe2 with a high on/off current ratio of five orders of magnitude. Our findings open new opportunities for using two-dimensional transition metal dichalcogenides for future spintronics.