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Angular momentum currents

Spin-polarized current
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Squeezing switching time distributions by SOT + X ETHzirich
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SOT-induced motion of skyrmions in Pt/TmIG/YIG

Néel Skyrmion
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Charge-spin conversion and spin-orbit torques

Functionalities & Applications
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Applications of spin-orbit torques ETHziirich

MRAMS DW logic circuits

Krizakova, PG et al., IMMM 562, 169692 (2022) Luo, Hrabec, Heyderman, PG et al.,
Nature 579, 214 (2020)
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Increasing SOT efficiency and reducing resistivity to improve power consumption

Critical switching current:
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Lee et. al., APL 102, 112410 (2013)
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SOT efficiency and resistivity, hence power density, are often correlated — need for large ¢, low p materials

Krizakova, PG et al., J. Magn. Magn. Mater. 562, 169692 (2022)



Spin-orbitronics




Spin and orbital magnetic moments in transition metals

Nonmagnetic metals Magnetic metals

(Ti, V, Zr, Nb, Mo, Ta, W, Pt, ...) (Fe, Co, Ni)
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atom  state
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Co 3d74s2  3d334s07 1.7 0.15
Ni 3d84s?  3d%44s06 0.6 0.05
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Orbital magnetism

= Orbital magnetic moments in solids
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Angular momentum currents
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Pure orbital current
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Orbital texture of transition metals

fcc-Ti
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* The coefficients C’s are the orbital character of the Bloch state.

* C’s are functions of k — orbital texture

Go et al., PRL 121, 086602 (2018); Jo et al., NPJ Spintronics 2, 19 (2024);

inner Fermi surface of fcc Ti

Orbital character

Choi et al., Nature 619, 52 (2023)
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Nonequilibrium orbital dynamics and orbital currents

= Electric fields applied to materials with quenched

orbital momenta and space inversion symmetry can -m

generate orbital currents '
Bernevig et al., PRL 95, 066601 (2005) |
Tanaka et al., PRB 77, 165117 (2008) 9
Go et al., PRL 121, 086602 (2018); PRB 109, 174435 (2024) |

Salemi and Oppeneer, PR Mater. 6, 095001 (2022)
Burgos-Atencia et al., Adv. Phys. X9, 2371972 (2024)

Pure orbital current
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Time- and length scales of orbital relaxation in FM and NM materials
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Long-range orbital transport in FM at k hot spots

Go et al., PRL 130, 246701 (2023)
Hayashi et al., Comm. Phys. 6,32 (2023)
Moriya et al., Nano Lett. 24, 6459 (2024)

Gao et al., Nat. Phys. 20, 1896 (2024)
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Fast relaxation of orbital current in Pt
and partial conversion to spin current

Rang & Kelly, PRB 109, 214427 (2024)
Belaschenko et al., PRB 108, 144433 (2023)
Urazhdin, PRB 108, L180404 (2023)
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Alternative models of orbital accumulation

Interface skew scattering: Interband coherences due to conductivity gradient:
imbalance between clockwise and OAM is locally generated by the electron current
counterclockwise electron reflections vorticity through interband quantum processes

v HOOOOOXOOROR o
; E =p(2)j(2)
Voss, Adov, and Titov, PRB 111, L121402 (2025) Valet, Jaffres, Cros, Raimondi, arXiv:2507.06771

Valet and Raimondi, PRB 111, L041118 (2025)



Spin and orbital effects resulting in the accumulation of magnetic moments
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Sinova et al., Rev. Mod. Phys. 87, 1213 (2015)
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Kontani et al., PRL 102, 016601 (2009)
Go et al., PRL 121, 086602 (2018)

REE

Manchon and Zhang, PRB 78, 212405 (2008)
PG and Miron, Phil. Trans. R. Soc. A 369, 3175 (2011)

OREE

Salemi et al., Nat. Comm. 10, 5381 (2019)
Johansson, J. Phys. Cond. Matter 36, 423002 (2024)
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Current-induced spin-orbit torques in FM/NM bilayers ETHziirich

Spin/orbital accumulation Spin/orbital accumulation
due to “bulk” spin/orbital Hall effect due to interfacial Rashba-Edelstein effect

Manchon, PG et al., Rev. Mod. Phys. 91, 035004 (2019)
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Harmonic Hall voltage measurements of spin-orbit torques

Out-of-plane magnetization:

Garello, PG et al., Nat. Nanotech 8, 587 (2013)
Ghosh, PG et al., Phys. Rev. Appl. 7, 014004 (2017)
Hayashi et al., Phys. Rev. B 89, 144425 (2014)

In-plane magnetization:
Avci, PG et al. Phys. Rev. B90, 224427 (2014)
Noél, PG et al, Phys. Rev. B 111, 144409 (2025)
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Orbital torques in three steps
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Nonmagnetic metal (NM)

Ferromagnet (FM)

1. Generation of nonequilibrium orbital current and/or orbital accumulation

2. Injection of orbital current into the FM

3. Conversion of the orbital current to a spin current and spin torque T ~ AS /At

D. Go et al., Phys. Rev. Res. 2, 013177 & 033401 (2020)
G. Sala and PG, Phys. Rev. Res. 4, 033037 (2022)



Can we distinguish between spin and orbital torques?

The periodic table method

(handle with care)
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Ti/Ni,NiFe  Hayashi et al., Comm. Phys. 6:32 (2023)
Ti/CoFeB  Choi et al., Nature 619, 52 (2023)
Cr/Ni,Co Lee et al., Comm. Phys. 4, 234 (2021)
Mn,Cr/Ni,Co Sala and PG, PRR 4, 033037 (2022)
Cr/CoFeB  Chiba et al., Nao Lett. 24, 14028 (2024)
Zr/CoFeB  Zhengetal., PRR 2, 13127 (2020)

CuOx/NiFe An et al., Nat. Comm. 7, 13069 (2016)
Gao et al., PRL 121, 17202 (2018)
CuOx/Co,CoFe Ding et al., PRR 4, L032041 (2022)

Damerio and Avci, Nano Lett. 25, 2181 (2025)
Ox/Cu/CoFe Kim etal., PRB 103, L020407 (2021)

Ox/Cu/Pt Krishmia et al., APL Mater. 12, 051105 (2024)

/Ni,NiFe Dutta and Tulapurkar, PRB 106, 184406 (2022)
/Ni,CoFeB Bose et al., PRB 107, 134423 (2023)



Control of L-S conversion in orbital torque systems ETHziirich

by FM layer by spacer layer
NM L
FM
weak L-S conversion large L-S conversion
X=Pt, Gd, Tb,...
Lee et al., Comm. Phys. 4, 234 (2021) Ding et al., PRL 125, 177201 (2020)
Lee et al., Nat. Comm. 12, 6710 (2021) Sala and PG, PRR 4, 033037 (2022)

Sala and PG, Phys. Rev. Res. 4, 033037 (2022)



Evidence of orbital-to-spin conversion from orbital torque measurements ETHzurich

Opposite torques produced by light-metal Cr in Ni and Co Enhancement of torque upon insertion of
1-nm-thick Pt between CuOx and TmIG
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Giant orbital-to-spin conversion by 4f metal spacers ETHziirich
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Coexistence of orbital Hall and spin Hall effects in Pt
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L-S coupled
drift-diffusion model
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G. Sala and PG, Phys. Rev. Res. 4, 033037 (2022)



Control of L-S conversion in orbital torque systems

by FM layer by spacer layer

NM L NM L

FM

weak L-S conversion large L-S conversion
X=Pt, Gd, Th,...

Lee et al., Comm. Phys. 4, 234 (2021) Ding et al., PRL 125, 177201 (2020)
Lee et al., Nat. Comm. 12, 6710 (2021) Sala and PG, PRR 4, 033037 (2022)
Sala and PG, Phys. Rev. Res. 4, 033037 (2022)
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by FM alloy

L>0

NM

FM X

X

tunable L-S conversion

Ding, PG et al. PRL 132,236702 (2024)



Cu/CuOx: a source of orbital torque

An et al., Nat. Comm. 7, 13069 (2016)
Gao et al., Phys. Rev. Lett. 121, 017202 (2018)

Orbital Rashba-Edelstein effect at the Cu/CuOx interface:

Go et al., Phys. Rev. B, 103, L121113 (2021)

Electron vorticity at the Cu/CuOx interface:
Yi et al., Phys. Rev. Lett., 135 156702 (2025)

Orbital vs spin injection in a RE-TM ferrimagnet
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Ding, PG et al. Phys. Rev. Lett. 132,236702 (2024)
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Orbital-to-spin conversion in Gd, Co, ,,,/CuO,
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Magnetic compensation point at 27% Gd

Torque compensation point at 15% Gd.

100-y .,

ML-s

Lacueva, Levy, Fert,
PRB 26, 1099 (1982);
Sol. St. Comm. 38, 551 (1981)

Ding, PG et al. Phys. Rev. Lett. 132,236702 (2024)



Orbital-to-spin conversion in Gd, Co, ,,,/CuO,: temperature dependence ETHzirich

Effective SH angle
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L-S conversion in antiferromagnets

by FM layer

NM L

by spacer layer

NM L

FM

by FM alloy
L>0

by antiferromagnets ?
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Spin transport in insulating AFMs
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Spin-orbit torques:

Spin pumping:

Wang et al.,

PRL 113, 97202 (2014)
Hahn et al.,

EPL 108, 57005 (2014)

Zhu et al., PRL 126, 107204 (2021)

Magnon-mediated switching:
Wang et al., Science 366, 1125 (2019)



Spin transport in insulating antiferromagnets ETH:ziirich
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Orbital transport in insulating antiferromagnets ? ETHziirich
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Orbital torques mediated by CoO ETHziirich
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Orbital torques mediated by CoO ETHziirich

Torque efficiency Thickness dependence
Pt/Co
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AFM transition and temperature dependence

Cu*/Co M vs H
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Temperature dependence
of torque efficiency
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Spin-orbit excitons in CoO

ETH:zurich

Electronic ground state of Co?*
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Scaling of orbital “transconductance” with orbital moments in CoO, NiO, MnO ETHziirich

Damping-like torque

VS
applied E-field
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Summary of L-S conversion mechanisms ETHzirich

by antiferromagnets

by FM layer by spacer layer by FM alloy
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Applications of orbital torques in spintronic devices ETHziirich
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Reciprocal S-L-charge conversion processes: Orbital pumping ETHziirich
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Magnetization dynamics
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g-factor scaling of orbital pumping from an insulating ferrimagnet into CuO, ETHzirich

Charge generation efficiency
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Reciprocal S-L-charge conversion processes: Orbital pumping

/ VSP\
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Dynamic orbital-to-spin ratio

in FM metals

CuOx

orbital pumping
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Large orbital torques and small damping in CoFe/CuO, ETHziirich
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Coupling phonons to orbital momenta: the acoustic orbital Hall effect ETHzurich
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Orbital momenta induced by optically driven phonons: the phononic Barnett effect = ETHzurich

Transient magnetization induced in a paramagnet Switching of a nearby magnet by excitation of CP phonons
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Charge-orbital-spin conversion
4 )

= Additional degree of freedom in spintronics — orbitronics Orbital pumping
= |Improving figures of merit by material optimization 4 R
= Giant orbital torques in 3d systems " Orbital pumping .scales with g-
= lLarge orbital torque can coexist with small magnetic damping factor of magnetic layer
= Tunable L/S conversion = QOrbital pumping does not result in
a significant increase of Gilbert
Some open questions: dampoing due to small L/S ratio
= QOrbital generation mechanisms: local vs nonlocal .

Electrical excitation/detection of

= QOrbital transport: length- and time scales phonon — orbital couplings

\. Coupling to quasiparticles: magnons, phonons, photons ) - _/
by antiferromagnets
by FM layer by spacer layer by FM alloy
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