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Chirality and phonons

handed chirality in physics: rotating and moving object

- circularly polarized in a plane perpendicular to their propagation direction
Zhang et al. PRL 115, 115502 (2015)

Juraschek et al., Nature Physics, perspective accepted (2025)
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Chiral phonons

- naturally arise in non-centrosymmetric materials:

in monolayer of the dichalcogenide WSe2
Zhu et al., Science 359, 579 (2018)
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which can only be excited with the matching circular photon polari-
zation (Fig. 1). As modes of opposite chirality have different energies  
(in Supplementary Fig. 4 and Supplementary Table 1, modes with oppo-
site chirality, degenerated at the Γ point, split at away from the zone 
centre), the peaks that are composed of several modes show a peak 
shift when taken with opposite circular polarization (Fig. 4).

In Fig. 5e, we show the associated magnetic moments induced by 
the chiral motion of the charged ions in the chiral phonons, which we 
calculate by extending the method used in refs. 21,22 so that it is appli-
cable at an arbitrary point in Q space. We begin by constructing the 
atomic circular polarization vector Sm as Sm = [Sx,m Sy,m Sz,m] (equation (3)),  
yielding the angular momentum of each atom as L Sℏ=m m. The mag-
netic moment (µm) of each atom participating in the phonon is

µ L Sℏγ Z m= = /2 , (4)m m m m m m

where γm is the gyromagnetic ratio tensor, which is derived from Zm, 
the Born effective charge tensor, and mm, the atomic masses. The pho-
non magnetic moment is then simply ∑µ µm

n
=1 m= . We show our calcu-

lated mode- and Q-point resolved magnetic moments in Fig. 5e and 
see that chiral phonons in quartz carry magnetic moments throughout 
the Brillouin zone, although the calculated magnetic moments are 
relatively small due to the low values of mγ . These phonon magnetic 
moments do not normally create a net magnetization due to the pres-
ence of time-reversal related pairs with opposite chirality and magnetic 
moment. If time-reversal symmetry is broken, however, population 
imbalances between the chiral pairs can be created31. Figure 5e also 
suggests that the phonon chirality can be investigated directly through 
interactions with the phonon magnetic moment using, for example, 
polarized inelastic neutron scattering.

In conclusion, we have used RIXS with circularly polarized X-rays to 
demonstrate the chiral nature of the phonons in chiral quartz crystals 
and in turn, have established a fundamental methodology for char-
acterizing chiral phonons. With the technique established by this 
proof-of-principle study, the chirality of phonons at general momen-
tum points can be characterized, opening up new perspectives in chiral 

phononics. For example, our work indicates that RIXS can be used to 
quantify the role of chiral phonons in exotic phenomena proposed in 
topological materials10,32–34, as well as to characterize interactions such 
as electron and spin couplings with chiral phonons14,35–38.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06016-5.
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Fig. 5 | Phonon dispersion and chiral phonon mode. a, Low-energy phonon 
dispersion for right quartz along the Γ to Q1 direction. Colours represent the z 
component of the phonon circular polarization. b, The same phonon band 
structure with colours representing mode effective charges (a measure of the 
degree in which the electronic charge distribution is perturbed by the 
phonons) in units of the elementary charge. c, The chiral phonon mode at 
Q1 = (−0.25, 0, 0.32) (indicated with an arrow in a) showing the main chiral 
revolutions of the oxygen atoms that have a different phase along the chain.  

d, Associated change in the local quadrupole moment (associated with the  
O 2p orbital) for a revolving oxygen atom between the phonon at phase 0 and 
phase π (black vectors represent an increase in the atomic quadrupole moment 
between its position at phonon phase 0 and its position at phase π, and green 
vectors represent a decrease). e, The phonon band structure coloured 
according to the magnitude of the magnetic moment of the phonons in units  
of the nuclear magneton.

in the prototypical chiral material quartz

Ueda et al., Nature 618, 946 (2023)

- phonon angular momentum leads to a variety of new effects:

- significant chiral phonon magnetic moment Juraschek et al., PRR 4, 013129 (2022)

Luo et al. Science 382, 698 (2023)

- phonon Hall effect Grissonnanche et al., Nature Physics 16, 1108 (2020)

- phonon Faraday effect Nova et al., Nature Physics 13, 132 (2017)

Juraschek et al., PRM 1, 014401 (2017)

- phonon Zeeman effect Baydin et al., Phys. Rev. Lett. 128, 075901 (2022)

6.8.2025 Chiral phonons for spintronics Ulrich Nowak, Universität Konstanz 3



Einstein - De Haas effect

- magnetic moment and angular
momentum are connected
A. Einstein and W. de Haas, KNAW

proceedings, 18 I, 691 (1915)

Barnett, Phys. Rev. 6, 239 (1915)

Matsuo et al., Front. Phys. 3:54 (2015)

- on fundamental time and length scales?

- magnetisation can break down on a time scale of
some hundred femtoseconds

Beaurepaire et al., PRL 76, 4250 (1996)

- phenomenological three-temperature model based
on heat

- but: angular momentum conservation violated
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Einstein - De Haas effect

- angular momentum of phonons and the
Einstein-de Haas effect
Zhang et al., PRL 112, 085503 (2014)

- Ultrafast Einstein-de Haas effect:
measured as transverse strain waves

- Ultrafast circularly polarized
phonons:
measured via ultrafast electron
diffraction

Dornes et al., Nature 565, 209 (2019)
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Ultrafast generation of circularly polarized phonons

How can the lattice absorb the spin angular momentum?

demagnetization local atomic rotation Einstein - de Haas
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New Research Unit: ChiPS

Funded by German Science Foundation: Chiral Phonons for Spintronics

ChiPS

Peter Baum Visualization of chiral phonons
in space and time

Uni Konstanz

Ulrich Nowak Modeling spin-lattice dynamics Uni Konstanz
Manfred Albrecht Advanced magnetic materials for

chiral phonons
Uni Augsburg

Sangeeta Sharma Ab-initio description of chiral-
phonon and spin coupling

FU & MBI Berlin

Tobias Kampfrath Ultrafast propagation and detec-
tion of chiral phonons

FU Berlin

Sebastian Goennenwein Chiral phonon pumping Uni Konstanz
Silvia Viola Kusminskiy Angular momentum transduc-

tion between magnons and phon-
ons in patterned microstructures

RWTH Aachen

Hans Huebl Tayloring phonon angular mo-
mentum transport

WMI Garching

- fundamental length and time scales of chiral phonons

- mechanisms behind creation, detection and decay of chiral phonons

- chiral transport phenomena

- chiral phonon hybridization with other excitations

- exploit magnon-phonon interaction in tailored nanostructures

- assess potential of phonon-based spintronics
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Multi-scale modelling in magnetism

- time scales from femtoseconds to years
- length scales from electronic to sample size
- temperatures from zero to above Curie temperature
- opto-magnetic effects, charge currents, laser heating

first principles
calculations

time dependent
DFT

Landau-Lifshitz-
Bloch equation

micromagnetism
and 

magneto-elasticity

Thiele 
equation

atomistic spin
dynamics

molecular
dynamics
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Atomistic spin model

- Hamiltonian for spins S i = µ
i
/µs on a given lattice:

spin model including relativistic interactions

H=−1

2

∑

i,j

S iJijS j −
∑

i

dz
i (Sz

i )2 − B ·
∑

i

µiS i −
∑

i,j

µ0µiµj

8π
3(S i ·e ij )(e ij ·S j )−S i ·S j

r3ij

exchange anisotropy external field dipole-dipole

- tensorial exchange interactions Jij can be decomposed in:
Hex = −1

2

∑
i ,j J

iso
ij S i · S j − 1

2

∑
i ,j S iJ

S
ijS j − 1

2

∑
i ,j D ij · (S i × S j)

isotropic exchange two-site anisotropy Dzyaloshynskii-Moriya

- different types of anisotropies . . .

- dipole-dipole interaction leads to:

- shape anisotropy
- domain structures
- large numerical effort

Yanes et al., PRB 96, 064435 (2017)
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Spin model parameters from first principles

- exchange integrals, isotropic but orbital
resolved
Liechtenstein et al., JMMM 67, 65 (1987)

- fully relativistic SKKR method plus spin
cluster expansion for layered systems and
clusters
Szunyogh et al., PRB 83, 024401 (2011)

- calculations of opto-magnetic effects such
as IFE
Berritta et al., PRL 117, 137203 (2016)

John et al., Scientific Reports 7, 4114 (2017)

Schmidt et al., PRB 102, 214436 (2020)

Gd orbital-resolved dynamics Frietsch et al., Nature Com. 6 8262 (2015)

Tb orbital-resolved dynamics Frietsch et al., Science Advances, 6, eabb1601 (2020)

CrPt switching with IFE in an AFM Dannegger et al., Phys. Rev. B Lett.104, 060413 (2021)

Hematite altermagnet Dannegger et al., Phys. Rev. B 107, 184426 (2023)
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Atomistic spin dynamics

stochastic Landau-Lifshitz-Gilbert equation

Ṡi = − γ
(1+α2)µs

Si ×Hi (t)

− αγ
(1+α2)µs

Si ×
(
Si ×Hi (t)

)

with Hi (t) = − ∂H
∂Si

+ ζi (t)

precession

dissipation

fluctuations

−Si × Heff,i

−Si × (Si × Heff,i)
Heff,i

and 〈ζiη(0)ζjϑ(t)〉 = δijδηϑδ(t)2αkBTµs/γ.

- numerical integration for up to 108 spins
Lyberatos et al., J. Phys. C 5, 8911 (1993)

- statistical average in the canonical
ensemble

, realistic dispersion relations; non-linear
prozesses; critical behavior; fluctuations

/ electrons and phonons only as heat-bath
with coupling constant α; classical
approximation; large numerical effort

6.8.2025 Chiral phonons for spintronics Ulrich Nowak, Universität Konstanz 13



Spin-lattice dynamics

Hamiltonian for spin and lattice degrees of freedom

H
(
S , r ,p

)
=
∑

i ,j

J(S i ,S j)

︸ ︷︷ ︸
spin

+Hsl

(
S i , r i

)
︸ ︷︷ ︸
spin-lattice

+
∑

i

p2
i

2mi
+
∑

i ,j

V (r ij)

︸ ︷︷ ︸
lattice

equations of motion

ṙ i =
∂H
∂pi

, ṗi = −∂H
∂r i

, Ṡ i =
γ

µs
S i ×

∂H
∂S i

Strungaru et al., PRB 103, 024429 (2021)

Hellsvik et al., PRB 99, 104302 (2019)

- no heat bath → microcanonic ensemble

- open problems:

- calculation of spin-lattice coupling parameters from
first-principles

- correct expressions for spin-lattice coupling
- conservation of energy, momentum, angular

momentum
Aßmann et al, JMMM 469, 217 (2019)
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Spin-lattice coupling from first principles

expansion of relativistic Heisenberg Hamiltonian in terms of displacements u i = r i − r eqi

spin-lattice Hamiltonian

HSLC =
∑

ij ,αβ

Jαβij (rk)Sαi S
β
j =

∑

ij ,αβ

Jαβij (r eq)Sαi S
β
j

︸ ︷︷ ︸
spin−spin interactions

+
∑

ijk,αβµ

Jαβµijk (r eq)Sαi S
β
j u

µ
k

︸ ︷︷ ︸
spin−spin−lattice interactions

+ . . .

spin-lattice coupling tensors Jαβµijk can be calculated via:

- super cell method
Hellsvik et al., PRB 99, 104302 (2019)

- extension of Liechtenstein formula
Mankovsky et al., PRL 129, 067202 (2022)

- embedded cluster method
Lange et al., PRB 107, 115176 (2023)

2

Figure 1. Geometry for the calculation of the spin-lattice
exchange coupling using the embedded cluster method (here
for i = k).

isotropic spin-spin coupling parameters, with extensions
to account for the full tensorial form of the interaction
parameters [28, 29] and a multi-site expansion [30].
In contrast, the calculation of spin-lattice interaction
parameters has received interest only recently. Refs.
[23, 24] have suggested to calculate the corresponding
spin-lattice exchange coupling parameters from first
principles by using supercells and calculating the SLC
as the modification of the SSC when displacing an
atom in each supercell. This method becomes accurate
for su�ciently large supercells but is restricted to a
small number of interacting atoms and relatively small
supercells due to its high computational costs. Recently,
Mankovsky et al. [25] have derived closed expressions
to calculate the spin-lattice coupling tensors in a fully-
relativistic way by treating the modifications in spin and
lattice configurations on the same, perturbative level.
It was shown that this method enables the calculation
of fully relativistic SLC tensors which are in satisfying
agreement with SLC tensors obtained by the supercell
method.

The present paper is organized as follows: In the first
two sections, we briefly review the spin-lattice coupling
methods presented in Ref. [25], i.e. the supercell and
perturbative method, and compare the results for bcc Fe
to a new method based on embedded clusters, which en-
ables a more e�cient and accurate calculation of the SLC
than the supercell method. Consequently we consider it
as a more appropriate method to benchmark the pertur-
bative SLC method presented in Ref. [25], enabling a
robust way of calculating spin-lattice interactions up to
any order of displacements and spin tiltings. Compar-
ing these results for all methods we find good agreement,
which allows us to use the perturbative SLC method to
systematically investigate spin-lattice coupling. In a first
step, we consider the symmetry of the SLC tensors w.r.t.
the crystal structure of the considered material and find

that the symmetry of the lattice (in combination with
spin-orbit coupling) gives rise to specific non-vanishing
SLC contributions, e.g. Dzyaloshinskii–Moriya like in-
teractions. In a second step, we calculate the SLC ten-
sors for various materials with di↵erent lattice configura-
tions and magnetic structures and consider the role of the
dimensionality by calculating the SLC for free standing
monolayers and 2D deposited magnetic films. Lastly, we
investigate the SLC contribution to magnetoelastic tran-
sitions in frustrated antiferromagnets. While the present
work is focused on the three-site exchange-like contribu-
tions to Eq. (1), a complementary work [31] will deal
with the anisotropy-like contributions as well as the role
of higher order terms.

II. THEORETICAL BACKGROUND

The field of spin-lattice coupling is still at its begin-
ning. The first ones to calculate ab initio spin-lattice
interaction parameters for the non-relativistic case were
Hellsvik et al. [23], who suggested to calculate the el-
ements of the corresponding spin-lattice exchange cou-
pling tensor from the modification of the spin-spin ex-

change coupling J↵�
ij (uk) due to a displacement uµ

k . Fo-
cusing here on the spin-lattice interaction term in the

Hamiltonian, @
@uµ

k
J↵�

ij (uk) uµ
k , linear with respect to dis-

placement uµ
k , the corresponding coupling parameters

J↵�,µ
ij,k can be delivered by calculating the derivative of

J↵�
ij (uk) numerically as follows

J↵�,µ
ij,k =

@

@uµ
k

J↵�
ij (uk) ⇡

J↵�
ij (uµ

k) � J↵�
ij (0)

uµ
k

(2)

considering the displacement uµ
k in the limit of uµ

k ! 0.
As suggested by Hellsvik et al. [23], the ordinary ex-

change coupling parameters J↵�
ij (uk) can be calculated

by making use of a scheme introduced by Liechtenstein
and coworkers leading to the so-called Liechtenstein or
LKAG formula [27]. This approach that makes use of
the magnetic force theorem implies the evaluation of the
free energy change due to a perturbation of the system,
which can be written within the multiple-scattering for-
malism [26] as follows

�F = � 1

⇡
Im Tr

Z EF

dE
�
ln ⌧(E) � ln ⌧0(E)

�
, (3)

with the scattering path operator of the unperturbed ref-
erence system

⌧ (0)(E) =
h
m(0)(E) � G(E)

i�1

, (4)

and of the perturbed system

⌧(E) =
h
m(E) � G(E)

i�1

, (5)
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Spin-lattice coupling parameters for bcc iron from first principles

spin-lattice Hamiltonian

Hsl =
∑

i ,j ,α,β

Jαβij Sαi S
β
j +

∑

i ,j ,α,β

∑

k,µ

Jαβ,µij ,k Sαi S
β
j u

µ
k +

∑

i ,j ,α,β

∑

k,l ,µ,ν

Jαβ,µνij ,kl Sαi S
β
j u

µ
k u

ν
l

- example: bcc Fe

- fully-relativistic scheme treats changes of spin
configuration and atomic positions equally

- even in inversion symmetric lattice leading term
for angular momentum transfer is DMI-type
interaction

- beyond magneto-elastic theory

Mankovsky et al., PRL 129, 067202 (2022)
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Towards combined spin-lattice dynamics

Full spin-lattice Hamiltonian

H =
∑

ij ,αβ

Jαβij Sαi S
β
j +

∑

ijk,αβµ

Jαβµijk Sαi S
β
j u

µ
k +

∑

i

p2
i

2mi
+
∑

ij

V (r ij)

resulting equations of motion:

Ṡ i = γ
µs

S i × ∂H
∂S i

= − γ
µs

S i ×
(
HSS

i + HSLC
i

)

ṙ i = pi
mi

ṗi = −∂H
∂r i

= F lattice
i + F SLC

i

- spin lattice coupling breaks rotational symmetry

⇒ total angular momentum not conserved!
(see also Melcher, PRL 25, 1201 (1970) for corresponding

magneto-elastic theory)

- what about the chiral phonon magnetic moment?
S i · (u i × pi )

2

Figure 1. Geometry for the calculation of the spin-lattice
exchange coupling using the embedded cluster method (here
for i = k).

isotropic spin-spin coupling parameters, with extensions
to account for the full tensorial form of the interaction
parameters [28, 29] and a multi-site expansion [30].
In contrast, the calculation of spin-lattice interaction
parameters has received interest only recently. Refs.
[23, 24] have suggested to calculate the corresponding
spin-lattice exchange coupling parameters from first
principles by using supercells and calculating the SLC
as the modification of the SSC when displacing an
atom in each supercell. This method becomes accurate
for su�ciently large supercells but is restricted to a
small number of interacting atoms and relatively small
supercells due to its high computational costs. Recently,
Mankovsky et al. [25] have derived closed expressions
to calculate the spin-lattice coupling tensors in a fully-
relativistic way by treating the modifications in spin and
lattice configurations on the same, perturbative level.
It was shown that this method enables the calculation
of fully relativistic SLC tensors which are in satisfying
agreement with SLC tensors obtained by the supercell
method.

The present paper is organized as follows: In the first
two sections, we briefly review the spin-lattice coupling
methods presented in Ref. [25], i.e. the supercell and
perturbative method, and compare the results for bcc Fe
to a new method based on embedded clusters, which en-
ables a more e�cient and accurate calculation of the SLC
than the supercell method. Consequently we consider it
as a more appropriate method to benchmark the pertur-
bative SLC method presented in Ref. [25], enabling a
robust way of calculating spin-lattice interactions up to
any order of displacements and spin tiltings. Compar-
ing these results for all methods we find good agreement,
which allows us to use the perturbative SLC method to
systematically investigate spin-lattice coupling. In a first
step, we consider the symmetry of the SLC tensors w.r.t.
the crystal structure of the considered material and find

that the symmetry of the lattice (in combination with
spin-orbit coupling) gives rise to specific non-vanishing
SLC contributions, e.g. Dzyaloshinskii–Moriya like in-
teractions. In a second step, we calculate the SLC ten-
sors for various materials with di↵erent lattice configura-
tions and magnetic structures and consider the role of the
dimensionality by calculating the SLC for free standing
monolayers and 2D deposited magnetic films. Lastly, we
investigate the SLC contribution to magnetoelastic tran-
sitions in frustrated antiferromagnets. While the present
work is focused on the three-site exchange-like contribu-
tions to Eq. (1), a complementary work [31] will deal
with the anisotropy-like contributions as well as the role
of higher order terms.

II. THEORETICAL BACKGROUND

The field of spin-lattice coupling is still at its begin-
ning. The first ones to calculate ab initio spin-lattice
interaction parameters for the non-relativistic case were
Hellsvik et al. [23], who suggested to calculate the el-
ements of the corresponding spin-lattice exchange cou-
pling tensor from the modification of the spin-spin ex-

change coupling J↵�
ij (uk) due to a displacement uµ

k . Fo-
cusing here on the spin-lattice interaction term in the

Hamiltonian, @
@uµ

k
J↵�

ij (uk) uµ
k , linear with respect to dis-

placement uµ
k , the corresponding coupling parameters

J↵�,µ
ij,k can be delivered by calculating the derivative of

J↵�
ij (uk) numerically as follows

J↵�,µ
ij,k =

@

@uµ
k

J↵�
ij (uk) ⇡

J↵�
ij (uµ

k) � J↵�
ij (0)

uµ
k

(2)

considering the displacement uµ
k in the limit of uµ

k ! 0.
As suggested by Hellsvik et al. [23], the ordinary ex-

change coupling parameters J↵�
ij (uk) can be calculated

by making use of a scheme introduced by Liechtenstein
and coworkers leading to the so-called Liechtenstein or
LKAG formula [27]. This approach that makes use of
the magnetic force theorem implies the evaluation of the
free energy change due to a perturbation of the system,
which can be written within the multiple-scattering for-
malism [26] as follows

�F = � 1

⇡
Im Tr

Z EF

dE
�
ln ⌧(E) � ln ⌧0(E)

�
, (3)

with the scattering path operator of the unperturbed ref-
erence system

⌧ (0)(E) =
h
m(0)(E) � G(E)

i�1

, (4)

and of the perturbed system

⌧(E) =
h
m(E) � G(E)

i�1

, (5)

SLC-fields SLC-forces
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Angular momentum conserving formulation of spin-lattice dynamics

replacing components of spins and displacements with
projection onto local lattice orientation

eαi =
rα+i − rα−i
|rα+i − rα−i |

Resulting spin-lattice Hamiltonian

H =
∑

ij ,αβ

Jαβij (S i · eαi )(S j · eβj )

+
∑

ijk,αβµ

Jαβµijk (S i · eαi )(S j · eβj )(uk · eµk )

+
∑

i

p2
i

2mi
+
∑

ij

V (r ij)

e.g. direction of easy axis is defined by the lattice
not via the lab frame

dz
∑

i

(Sz
i )2 → dz

∑

i

(S i · ez
i )2

- this Hamiltonian is based on difference vectors and scalar products

⇒ it is rotational and translational invariant

⇒ momentum and angular momentum are conserved in the total system!

Weißenhofer et al., PRB 108, L060404 (2023)
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Spin-spin interaction via phonons

2 parallel spins 2 antiparallel spins

Two parallel and magnetically uncoupled spins in a phonon bath couple via exchange of angular momentum
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Spin-spin interaction via phonons

correlation quantified via cross covariance of spin components:

Kµν
ij (∆t) = 〈Sµi (t + ∆t)Sνj (t)〉 − 〈Sµi 〉〈Sνj 〉

and cross power spectral density (CPSD):

Pµνij =

∫ ∞

0

∣∣∣S̃µνij (f )
∣∣∣
2
df

Schick et al., in preparation

see also: Yokoyama, JPSJ 93, 123705 (2024)
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Chirality-selective magnon-phonon dispersion: ferromagnets

𝑘𝑎

𝑑𝑥 = 0.01𝐽

Γ 1 𝜋, 0, 0

−𝜋 −𝜋
2

0 𝜋

2
𝜋

- avoided crossings, magnon polarons (Li et al., APL Materials 9, 060902 (2021)) Borysenko et al., in preparation

- degeneracy lifted: transverse phonons turn into chiral, only one of the two chiral phonon modes affected
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Chirality-selective magnon-phonon coupling: antiferromagnets

𝑘𝑎

𝑑
𝑥
= 0.01𝐽

Γ 1 𝜋, 0, 0

−𝜋 −𝜋
2

0 𝜋

2
𝜋

- avoided crossings, hybridized quasiparticles Borysenko et al., in preparation

- degeneracy lifted: both chiral phonon modes affected
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Chiral phonons from chirality-selective magnon-phonon coupling

- coupled magnon-phonon bands in bcc Fe
from first principles via Holstein-Primakoff
transformation

- grey dashed lines are the bare magnon
energies

- colors encode the phonon chirality

- transverse modes are degenerate for
Γ→ (0, 0, 2π/a)
and Γ→ (π/a, π/a, π/a)

- degeneracy lifted: only one of the two
chiral phonon modes affected
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Figure 1. Coupled magnon-phonon bands in bcc Fe calcu-
lated along various high-symmetry paths of the BZ start-
ing from � = (0, 0, 0). Labels LA, TA, and mag indicate
the predominant character of the mode far away from the
avoided crossings and the colors encode the phonon chirality
⌃ = L · v/|v|, with v = @!/@k being the group velocity.
The insets zoom in on the avoided crossings (indicated by the
small grey rectangles), and the grey dashed lines are the bare
magnon energies. Note that the bare TA modes are degener-
ate for � ! (0, 0, 2⇡/a) and � ! (⇡/a, ⇡/a, ⇡/a).

0.45 meV. Physically, the magnon-phonon coupling con-
tains an antisymmetric, DMI-like contribution, c±,a

k� =
1
2

P
�

p
~S3/m!k�[(J̃xz�

k �J̃zx�
k )±i(J̃yz�

k �J̃zy�
k )]��

k� and

a symmetric, two-site anisotropy-like contribution c±,s
k� =

1
2

P
�

p
~S3/m!k�[(J̃xz�

k + J̃zx�
k ) ± i(J̃yz�

k + J̃zy�
k )]��

k�,
both of which are of relativistic origin. In bcc Fe, the
DMI-like coupling greatly exceeds the symmetric one
[30]. Therefore, the widely-used conventional magneto-
elastic theory [50] is unable to describe the magnon-
phonon dispersion calculated here, as it lacks a term re-
lated to DMI. Such a term was only recently derived [51]
from the atomistic SLC Hamiltonian (2). In the light of
this so-far overlooked DMI-like coupling, established in-
terpretations of magnon-phonon hybridization based on
conventional magneto-elastic theory [52–56] has to be re-
considered.

As one key result of this paper, we find that the
magnon mode only hybridizes with one of the TA modes,
if the two bare TA phonons are degenerate. In the non-
degenerate case, i.e., � to (0, ⇡/a, ⇡/a), there are two
avoided crossings with both TA modes in close proxim-
ity. Calculating the phonon chirality ⌃ for these magnon-
phonon modes, we reveal that the magnons selectively
couple to phonons with one chirality. We note that upon
reversal of the magnetization from z to �z, the magnons

Figure 2. Phonon angular momenta and chiralities of the
coupled magnon-phonon bands computed for bcc Fe. Plots
in each row illustrate (a) Lx, (b) Lz, (c) ⌃ without applied
magnetic field, and (d) ⌃ with a field of B = 10 T for the
di↵erent magnon-phonon modes with label n 2 {2, 3, 4}. The
mode with n = 1 (LA phonon) is achiral and hence not shown.
Ly is zero in the kx-kz plane depicted here.

instead only couple to phonons with opposite chirality.
We further emphasize that the magnon-phonon coupling
also lifts the degeneracy of the phonons far away from
the avoided crossing regions, leading to a small energy
gap of the order of 1 µeV between the two chiral phonon
modes. Selective hybridization between magnons and
non-propagating circularly polarized phonons has been
measured recently in the layered zigzag antiferromagnet
FePSe3 [57].

The phonon angular momentum and chirality in the
kx-kz plane of the BZ are shown in Fig. 2 (results for
other planes are discussed in the SM [43]). As argued
above, truly chiral phonons primarily occur in close prox-
imity of the high symmetry axes – here, the kz axis –
where they arise as a superposition of the degenerate bare
TA phonons. Note that phonons along kx and ky remain
linear. This symmetry breaking arises from the orienta-
tion of magnetization along the z-direction in combina-
tion with spin-orbit coupling [58].

The emergence of chiral phonons in a roughly circu-
lar pattern around the � point [see Fig. 2(a),(b)] is a
result of magnon-phonon hybridization. This can be
demonstrated by applying an external magnetic field in
the direction of the magnetization. A magnetic field B
shifts the bare magnon energies by "k ! "k + µsB, with
µs = 2.2 µB being the saturation magnetic moment of bcc
Fe [59]. For field strengths of B = 10T the energies of

Weißenhofer et al., arXiv:2411.03879 (2024)
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Summary:

- ultrafast transfer of spin angular momentum
into the lattice

- polarized phonons absorb the spin angular
momentum in Ni

- chiral phonons for spintronics

- modelling spin-lattice dynamics
- relativistic spin-lattice coupling parameters from

first principles
- rotationally invariant formulation of spin-lattice

Hamiltonian
- phonon mediated spin spin interaction
- chirality-selective magnon-phonon coupling
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