

INTERFACIAL EFFECTS OF ALTERMAGNETIC RUO₂ WITH FERROMAGNETS AND HEAVY METALS

G. Reiss, K. Rott, J.-M. Schmalhorst, I. Ennen, A. Thomas^{*}, T. Kuschel, M. Mattern, A. Moltskaltsova, L. Kempe, N. Schmolka, F. Knossalla, F. Peters, M. Koll, M. Gärner

Physics Department, Bielefeld University, Universitätsstr. 25, D-33615 Bielefeld, Germany.

* Leibniz Institute for Solid State and Materials Research Dresden (IFW), Institute for Metallic Materials, Helmholtzstrasse 20, 01069 Dresden, Germany.

Collaborations with Uni Mainz, TU Dresden, TU Berlin, ...

Introduction Heterostructures / Multilayers

- New features with in situ resistance and magnetoresistance measurements
- **o** Sensing applications
- > Altermagnets
 - \circ Growth of RuO₂
 - Properties of RuO₂ / Permalloy
 - Harmonic Hall investigation of torques in RuO₂ / Permalloy
 - Neél vector switching in RuO₂/Pt
 - Magnetic tunnel junctions RuO₂/MgO/CoFeB
 - Growth of Mn₅Si₃

Co/Cu multilayers

Co (3nm)

Cu (1.8nm)

Co (3nm)

Cu (1.8nm)

Introduction: Examples for heterostructures: $(Co/Cu)_X$

J. Appl. Phys. 75, 362–367 (1994), Phys. Rev. B 87, 134406 (2013)

Bass, J. (2016) in: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer

Exhibit Giant Magnetoresistance

→ Characterize interfaces

Examples for heterostructures: (Co/Cu)_X

Faculty of Physics

Complete field loop R vs. \vec{H} in 0.2 sec

→ From one field loop to the next, we have about 0.1 monolayers thickness increase

New machine:

3-D Magnetic ac-field at 10-20 Hz

Sample holder with in situ resistance measurement

Sputter- and MBE chambers

Fast electronics to shuffle 5000 data points per sec over hours

Forschungslabore Mikroelektronik Deutschland

Kläui (UMZ), Reiss (UBI)

In situ magnetoresistance characterization

- Unexpected behavior for d_{Co} lower than about 1nm
- Pronounced maximum (? oscillation) with Co thickness
- GMR also increases with the first few atoms of Cu
- Explanation pending ...

Application of heterostructures

Sensing, memories ..

Detect the position and movement of magnetic particles

 By sensing the stray field of magnetic nanoparticles

Sensing of magnetic particles & biomolecules

Introduction Heterostructures

- New features with in situ resistance and magnetoresistance measurements
- Sensing applications

> Altermagnets

- o Growth of RuO₂
- Properties of RuO₂ / Permalloy
- Harmonic Hall investigation of torques in RuO₂ / Permalloy
- Neél vector switching in RuO₂/Pt
- Magnetic tunnel junctions RuO₂/MgO/CoFeB
- Growth of Mn₅Si₃

a) Spin split band structureof a simple ferromagnet (FM)b) Band structure of a simpleAntiferromagnet

Altermagnets: Why interesting?

c) Spin split band structure of a model altermagnet (FM)

- \rightarrow No net spin polarization
- → But in this case spin polarized currents depending on direction.
- → Interesting for many phenomena:
- Tunneling Magnetoresistance
- Spin Orbit Torque #1 (switching of a FM)
- Spin Orbit Torque #2 (switching of an AM)

... and many more

L. Bai, W. Feng, S. Liu, L. Šmejkal, Y. Mokrousov, Y. Yao, Altermagnetism: Exploring New Frontiers in Magnetism and Spintronics. Adv. Funct. Mater. 2024, 34, 2409327. https://doi.org/10.1002/adfm.202409327

Altermagnets: Why interesting?

Crystal structure and magnetic moments (Ru) of RuO_2 (tetragonal lattice with different surroundings of the two Ru sites).

Reason for magnetic ordering is not primarily spin-orbit coupling, but due to crystal symmetry \rightarrow expected to be robust with respect to contamination, doping etc.

But magnetic order for RuO₂ is also reported as fragile !

A. Smolyanyuk, I.I. Mazin, L. Garcia-Gasull, R. Valentí, Fragility of the magnetic order in the prototypical altermagnet RuO₂, Phys. Rev. B 109, 1345424 (2024)

L. Bai, W. Feng, S. Liu, L. Šmejkal, Y. Mokrousov, Y. Yao, Altermagnetism: Exploring New Frontiers in Magnetism and Spintronics. Adv. Funct. Mater. 2024, 34, 2409327. https://doi.org/10.1002/adfm.202409327

Introduction Heterostructures

- New features with in situ resistance and magnetoresistance measurements
- Sensing applications

> Altermagnets

- \circ Growth of RuO₂
- Properties of RuO₂ / Permalloy
- Harmonic Hall investigation of torques in RuO₂ / Permalloy
- Neél vector switching in RuO₂/Pt
- Magnetic tunnel junctions RuO₂/MgO/CoFeB
- Growth of Mn₅Si₃

Altermagnet growth: RuO₂ on MgO (100)

- \rightarrow RuO₂ in (110) direction
- \rightarrow Twinning possible

- \rightarrow Need to grow (110) or (101) direction
- \rightarrow Not many substrates possible
- \rightarrow MgO with (001) , (110) ..
- → TiO₂ (100), (110) ..
- \rightarrow MgF_{2...}

UNIVERSITÄT BIELEFELD

Layer deposition using magnetron sputtering

Faculty of Physics

Maik Gärner

Highly textured (110) growth of RuO₂, no twinning visible

Again, highly textured (110) growth of RuO₂ with twinning

Introduction Heterostructures

- New features with in situ resistance and magnetoresistance measurements
- Sensing applications

> Altermagnets

- o Growth of RuO₂
- Properties of RuO₂ / Permalloy
- Harmonic Hall investigation of torques in RuO₂ / Permalloy
- Neél vector switching in RuO₂/Pt
- Magnetic tunnel junctions RuO₂/MgO/CoFeB
- Growth of Mn₅Si₃

Structure of MgF₂/RuO₂/Permalloy

- \rightarrow Polycrystalline growth of Permalloy (Ni₈₀Fe₂₀)
- \rightarrow Sixfold symmetry in XRD texture maps
- \rightarrow (111) texture with twinning

→ No magnetic crystalline
 anisotropy for
 Permalloy expected

25

- 20

15

10

- 5

0

intensity

BIELEFELD

UNIVERSITÄT

Finn Peters

Magnetism of $MgF_2/RuO_2/Permalloy$

- \rightarrow Strong induced uniaxial anisotropy
- \rightarrow Remanence different for

0° and 180° ??

- \rightarrow Exchange bias of \approx 17.5 mT
- \rightarrow Hint for antiferromagnetism in RuO₂
- \rightarrow Unstable upon annealing
- $\rightarrow \mu_0~M_S$ for permalloy $\approx 1.05~T$

Introduction Heterostructures

- New features with in situ resistance and magnetoresistance measurements
- Sensing applications

> Altermagnets

- o Growth of RuO₂
- Properties of RuO₂ / Permalloy
- Harmonic Hall investigation of torques in RuO₂ / Permalloy
- Neél vector switching in RuO₂/Pt
- Magnetic tunnel junctions RuO₂/MgO/CoFeB
- Growth of Mn₅Si₃

UNIVERSITÄT

Harmonic Hall Measurements RuO₂ / Permalloy

Expect:

 $V_H = (R_H + R_{AHE})I_0 sin(\omega t) + R_{AHE}^{2\omega}I_0 cos(2\omega t) = V_0 + V_\omega sin(\omega t) + V_{2\omega} cos(2\omega t)$

 $V_{\omega} = R_P sin(2\varphi) I_0$ R_P: Planar Hall Effect Resistance

Niklas

Schmolka

$$V_{2\omega} = \left(-\frac{B_{FL}}{B_{ext}}R_P \cos(2\varphi) - \frac{1}{2}\frac{B_{DL}}{B_{eff}}R_{AHE} + \alpha' I_0\right)\frac{I_0}{\sqrt{2}}\cos(\varphi)$$

 B_{FL} / B_{DL} : Field- and damping-like field B_{eff} : Effective field including anisotropy B_{ext} : External field R_{AHE} : Anomalous Hall Effect Resistance α° : Includes Anomalous Nernst Effect

$$\theta_{SH_{DL/FL}} = \frac{2e}{\hbar} \frac{B_{DL/FL} M_s t_{FM}}{j_{AM} \, \mathbf{C}}$$

- M_S: Saturation Magnetization t_{FM}: Thickness of FM layer
- j_{AM}: Current density in AM
- c: Correction factor* $\approx 1/1.45$

* L. Neumann, M. Meinert; Influence of the Hall-bar geometry on harmonic Hall voltage measurements of spin-orbit torques. *AIP Advances* 1 September 2018; 8 (9): 095320. <u>https://doi.org/10.1063/1.5037391</u>

BIELEFELD

UNIVERSITÄT

Harmonic Hall Measurements RuO₂ / Permalloy

t_{FM} = 4.54 ± 0.23 nm t_{AM} = 5.56 ± 0.6 nm

Roughness < 1nm

µ₀Ms ≈ 1 ± 0.02 T

 R_{AHE} = 0.086 ± 0.001 Ω

BIELEFELD

UNIVERSITÄT

Expect:

Harmonic Hall Measurements RuO₂ / Permalloy

 $V_{\omega} = R_P sin(2\varphi) I_0$ "Planar Hall Effect" $V_{2\omega} = \left(-\frac{B_{FL}}{B_{ext}}R_P \cos(2\varphi) - \frac{1}{2}\frac{B_{DL}}{B_{eff}}R_{AHE} + \alpha' I_0\right)\frac{I_0}{\sqrt{2}}\cos(\varphi)$

Get:

Examples of the first harmonics for a magnetic field of (a) μ_0 H = 80mT and (b) μ_0 H = 350mT.

The (a) damping-like θ_{SHDL} and (b) field-like θ_{SHFL} SHA's of the Hall crosses at different applied fields \rightarrow Torques seem to be present \rightarrow Antiferromagnetism

Introduction Heterostructures

- New features with in situ resistance and magnetoresistance measurements
- Sensing applications

> Altermagnets

- Growth of RuO₂
- Properties of RuO₂ / Permalloy
- Harmonic Hall investigation of torques in RuO₂ / Permalloy
- Neél vector switching in RuO₂/Pt
- Magnetic tunnel junctions RuO₂/MgO/CoFeB
- Growth of Mn₅Si₃

BIELEFELD

Florian Knossalla

Neél vector switching in RuO₂/Pt

Image of the 8-cross *pattern* with an overlay depicting the measurement geometry.

Detect either longitudinal resistance (AMR) or -as in the sketchperpendicular voltage (PHE).

Expect:

UNIVERSITÄT BIELEFELD

Neél vector switching in RuO_2/Pt

Pulse line Pulse line

- Nothing if all is simply metallic and not magnetic ?
- Anisotropic Magnetoresistance or Planar Hall voltage, if Neél vector rotates
 Compare to

¹ M. Dunz, PhD thesis Uni Bielefeld (2021), Prof. M. Meinert,

BIELEFELD

UNIVERSITÄT

Florian

Neél vector switching in RuO,/Pt

Unclear up to now, if really Neél-Vector switching is achieved.

Seems, however, not to be (pure) electromigration.

Ongoing experiments:

Resistance drops upon increasing the pulse current density.

Look for structural changes...

Introduction Heterostructures

- New features with in situ resistance and magnetoresistance measurements
- Sensing applications

> Altermagnets

- Growth of RuO₂
- Properties of RuO₂ / Permalloy
- Harmonic Hall investigation of torques in RuO₂ / Permalloy
- Neél vector switching in RuO₂/Pt
- Magnetic tunnel junctions RuO₂/MgO/CoFeB
- Growth of Mn₅Si₃

Altermagnetic tunneling magnetoresistance

FM MgO AM

RuO₂ (110)/barrier/ferromagnet tunnel junction

- RuO_2 spin splitting along Γ -M ([110]) direction
- → spin-polarized current along [110]
- different transmissions for parallel/antiparallel states

Fedchenko et al., Sci. Adv. **10**, 5 (2024)

Different features: Smaller conductance, up-up can be also smaller
than up-downBut:Energy not experimentally accessible
Accessible parameters: Voltage U, direction of \overrightarrow{M}_{FM}

Inga Ennen

UNIVERSITÄT

BIELEFELD

Faculty of Physics

RuO₂ / MgO / CoFeB tunnel junctions

MgO/RuO2[20nm]/MgO[2.1nm]/CoFeB[4nm] – High resolution TEM

MTJ fabrication using e-beam lithography

- 3 step lithography process
- circular pillars with diameters $d=200nm-2\mu m$

Tunneling curves show typical nonlinear behavior around U = $0V \rightarrow$ Tunneling seems oK.

Tunneling MR in $RuO_2/MgO/CoFeB$ \vec{H} out of plane

out-of-plane switching of the ferromagnet

→ TMR up to 13.2% at 3K

Maik Gärner

- equal switching fields in TMR and VSM data
- → sign of the TMR is bias voltage dependent

Tunneling MR in RuO₂/MgO/CoFeB

Faculty of Physics

Temperature dependence of the oop-TMR

Introduction Heterostructures

- New features with in situ resistance and magnetoresistance measurements
- Sensing applications

> Altermagnets

- Growth of RuO₂
- Properties of RuO₂ / Permalloy
- Harmonic Hall investigation of torques in RuO₂ / Permalloy
- Neél vector switching in RuO₂/Pt
- Magnetic tunnel junctions RuO₂/MgO/CoFeB
- Growth of Mn₅Si₃

BIELEFELD

UNIVERSITÄT

Maximilian Koll

Outlook

\succ RuO₂:

- Confirm, if Neél vector switching is present
- **o** Improve tunneling barrier
- Modify growth of Mn_xSi_y
- > TMR and GMR in Altermagnet-Devices
- Spincaloric effects (T. Kuschel)

Many thanks to

K. Rott, J.-M. Schmalhorst, I. Ennen, A. Thomas, T. Kuschel, L. Kempe, N. Schmolka, F. Knossalla, F. Peters, M. Koll, M. Gärner

