

I'ENS de de

Physique o sorbonne université

aboratoire de Constant de Cons

de

Quantum Functionalities of Magnetic Skyrmions

Christina Psaroudaki

LPENS, Paris

Topological Solitons in Magnetism

Real Space

Topology in Magnetism, Jiadong Zang, Vincent Cros, and Axel Hoffmann, Springer Series in Solid-State Sciences 192 (2018).

Christina Psaroudaki

Topologically protected magnetization textures

Fe_{0.5}Co_{0.5}Si with lattice spacing 90 nm

Probes for Detection

- **Electrons** (Lorentz TEM, Spin-Polarized EM)
- Scanning Probes (MFM, NV, SPSTM)
- **Photons** (soft X-rays, XMCD, XMLD)
- Scattering Techniques (Neutron Scattering)

Topological Solitons

Börge Göbel, Ingrid Mertig, and Oleg A.Tretiakov, *Physics Reports* **895**, 1 (2021)

Skyrmionics

- Nanometric size
- High mobility
- Topological stability

- Controllable properties
- Compact
- Low-energy consumption

M. N. Wilson, et al., *Phys. Rev. B* **89**, 094411 (2014).

For a Review: *Magnetic Skyrmion Materials*, Y. Tokura and N. Kanazawa, Chem. Rev. **121**, 5, 2857 (2021).

Chiral Magnets

$$\mathbf{O} \cdot (\mathbf{S}_i \times \mathbf{S}_{i+1}) - \tilde{K}(S_i^z)^2 - HS_i^z$$

Bulk Compounds

 GaV_4S_8 MnFeSi FeGe Cu_2OSeO_3 MnCoSi

Thin films on magnetic metals

T. Okubo, et al., *Phys. Rev. Lett.* **108**, 017206 (2012).

A. O. Leonov, and M. Mostovoy, *Nature Comm.* 6, 8275 (2015).

Christina Psaroudaki

Frustrated Magnets

 Gd_2PdSi_3 $\mathrm{Gd}_3\mathrm{Ru}_4\mathrm{Al}_{12}$

A. Fert, et al., *Nature Nan.* 8, 152 (2013). Shilei Zhang, et al., *Sci. Rep.* **5**, 15773 (2015).

Stability, formation, and dynamics are well understood to motivate going in the quantum regime!

Christina Psaroudaki

Applications

Neuromorphic Computing

K. Mee Song, et al., Nature Electronics 3, 148–155 (2020).

Stochastic Computing

D. Pinna et al., Phys. Rev. Applied 9, 064018 (2018).

Skyrmions going quantum

Atomic Scale Skyrmions

Fe ML on Ir(111) with lattice spacing **1 nm** Frustrated Magnets with lattice spacing ~ 2.5 nm

S. Heinze, et al., *Nature Physics* **7**, 713 (2011). M. Hirschberger, et al., *Nature Comm.* **10** 5831 (2019).

Quantum Sensing

E. Marchiori, et al., Nat. Rev. Phys. 4, 49 (2022)

Christina Psaroudaki

Quantum Magnonics

H.Y.Yuan, et al., Physics Reports **965**, 1-74 (2022).

Topological Magnons

S. A. Diaz, et al., PRL 122, 187203 (2019).

Quantum Skyrmions

Christina Psaroudaki

<u>C. Psaroudaki</u>, S. Hoffman, J. Klinovaja, and D. Loss, *Quantum Dynamics of Skyrmions in Chiral Magnets,* Phys. Rev. X 7, 041045 (2017).

Quantum Mass

C. Psaroudaki and D. Loss, Quantum Depinning of a Magnetic Skyrmion, Phys. Rev. Lett. 124, 097202 (2020).

Macroscopic Quantum Phenomena

V. Lohani, C. Hickey, J. Masell, and A. Rosch, Quantum Skyrmions in Frustrated Ferromagnets, Phys. Rev. X 9, 041063 (2019).

Skyrmions in spin 1/2 frustrated magnets

Quantum Skyrmions

- 0
- Ο

Ο Macroscopic quantum tunneling

Strong Quantum Fluctuations

Skyrmions in spin 1/2 magnets

Christina Psaroudaki

Collective coordinates $\mathbf{m}(\mathbf{r},t) \rightarrow \mathbf{m}(\mathbf{R}(t),\varphi_0(t),\gamma(t))$

Collective coordinates canonical quantization $\mathbf{R}
ightarrow \hat{\mathbf{R}}$ Particle + fluctuations

$$\hat{H} = \frac{1}{2} \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} [J \hat{S}_{\boldsymbol{r}} \cdot \hat{S}_{\boldsymbol{r}'} + \boldsymbol{D}_{\boldsymbol{r}'-\boldsymbol{r}} \cdot (\hat{S}_{\boldsymbol{r}} \times \hat{S}_{\boldsymbol{r}'})] + \sum_{\boldsymbol{r}} \boldsymbol{B} \cdot \hat{S}_{\boldsymbol{r}'}$$

A. Haller, et al., Phys. Rev. Res. 4, 043113 (2022) V. Lohani, et al., Phys. Rev. X 9, 041063 (2019).

Quantum Depinning

Topological number

 $\Gamma^{-1} \approx 100 \text{ s}$

 $\mathcal{S}_E = \int_0^\beta d\tau \left[-i\tilde{Q}(\dot{\mathcal{X}}\mathcal{Y} - \dot{\mathcal{Y}}\mathcal{X}) + \frac{1}{2}\mathcal{M}\dot{\mathbf{R}}^2 + U(\mathcal{X},\mathcal{Y})\right]$

Skyrmion Mass

Pinning Potential

Quantum Depinning of a Magnetic Skyrmion, <u>C. Psaroudaki</u> and D. Loss, Phys. Rev. Lett. **124**, 097202 (2020)

J. Brooke, et al., Nature **413**, 610 (2001).

R. Zarzuela, et al., Phys. Rev. B 85, 180401(R) (2012).

Quantum Computing

Photon Polarization

Scalability

Christina Psaroudaki

Electronic Spin

Superconducting Flux

Skyrmion Helicity

Initialization and Control

$$\mathcal{G}_0 = \{U_x, U_y, U_z, U_{\text{ph}}, U_{\text{CNOT}}\}$$
$$\mathcal{G}_1 = \{U_H, U_S, U_T, U_{\text{CNOT}}\}$$

Universal Set of Quantum Gates

Superconducting Qubits

John Clarke & Frank K. Wilhelm, *Superconducting quantum bits, Nature* **453** (2008)

Daniel Loss and David P. DiVincenzo, *Quantum computation with quantum dots, Phys. Rev. A* **57**, 120 (1998)

Photon Qubits

J. L. O'Brien, et al., *Photonic quantum technologies,* Nature Photonics **3** 687 (2009)

Figure from: Ernesto Galvão/ Quantum and linear-optical computation/INL

Physical Qubits

Molecular Magnets

Michael N. Leuenberger & Daniel Loss* Quantum computing in molecular magnets, Nature **410**, 789 (2001)

Novel Platform: Skyrmion Qubit

Roadmap for new qubit development

- **Readout Measurements**

Advantages

- Compact, high density, and low-energy devices Ο Single-Spins
- Ability to individually address qubits and tune external parameters 0
- Transferable state-of-the-art technology from skyrmionics Ο

Identify a degree of freedom that can be quantum-coherently controlled

Skyrmion Helicity in frustrated magnets

Check if a few traditional requirements are met

→ Coherence time, scalability, control and gate operations

Skyrmions

Circuits

Stabilizing Mechanisms

 $\propto \cos(2\varphi_0)$ **Dipole Interactions:**

Dzyaloshinskii- Moriya Interactions: $\propto \cos(arphi_0)$

Geometrical frustration: Global Symmetry: No intrin

Christina Psaroudaki

Bulk

$$\mathbf{m} = (\sin \Theta(\mathbf{r}) \cos \Phi(\mathbf{r}), \sin \Theta(\mathbf{r}) \sin \Phi(\mathbf{r}), \cos \Phi(\mathbf{r}) = \phi + \varphi_0$$

$$\Phi(\mathbf{r}) = \phi + \varphi_0$$

$$\Theta(\mathbf{r}) = \Theta(\rho)$$

$$\ell_{\rm typ} = J/V \qquad \ell_{\rm sky} = 100 {\rm nm} - 100 {\rm nm} - 100 {\rm nm} + 100 {\rm nm} - 100 {\rm nm} + 100 {\rm nm} +$$

"Quantum Functionalities of Magnetic Skyrmions"

$(\mathbf{s} \Theta(\mathbf{r}))$

Skyrmion Helicity Quantization

 $Z = \int \mathcal{D}\mathbf{m} e^{i\mathcal{S}(\mathbf{m},\mathbf{\dot{m}})}$

Path integral
$$\mathbf{m} = \mathbf{m}_0(\mathbf{r}, \varphi_0(t))$$

Faddeev-Popov techniques δ -constraints $\int \mathcal{D}\varphi_0 \mathcal{D}S_z J_{\varphi_0} J_{S_z} \delta(F_1) \delta(F_2) = 1$

Integrate out zero mode Momentum Conservation

$$\mathcal{S}_{\rm eff} = \int dt [\bar{S} \ S_z \dot{\varphi}_0 - H(\varphi_0, S_z)]$$

Conjugate Momentum

Conjugate momentum

Generator of rotations

$$S_z = \int d\mathbf{r}(1 - m_z)$$
$$\{S_z, \Phi\} = -\partial_{\phi}\Phi$$

Christina Psaroudaki

quantization $(t)) + \chi(\mathbf{r}, t, \varphi_0(t)) \qquad Z = \int \mathcal{D}\varphi_0 \mathcal{D}S_z e^{i\mathcal{S}_{eff}(\varphi_0, S_z)} \tilde{Z}$

Canonical Forms $\{\Phi(\mathbf{r}), \Pi(\mathbf{r}')\}_D = \delta(\mathbf{r} - \mathbf{r}')$ $\int dr^2 dt \; \dot{\Phi}(1 - \cos\Theta) = \int dt [S_z \dot{\varphi}_0 + \int dr^2 \chi^* \dot{\chi}]$

Collective Coordinate Operators

$$egin{aligned} \hat{arphi}_0\,, \hat{S}_z & [\hat{arphi}_0, \hat{S}_z] = i/ar{S} \ \hat{S}_z |s
angle = (s/ar{S})|s
angle \ \hat{arphi}_0 |arphi_0
angle = arphi_0 |arphi_0
angle \,, ext{ with } |arphi_0
angle = |arphi_0 - arphi_0|arphi_0
angle \,, ext{ with } |arphi_0
angle = |arphi_0 - arphi_0|arphi_0
angle \,, ext{ with } |arphi_0
angle = |arphi_0 - arphi_0|arphi_0
angle \,, ext{ with } |arphi_0
angle = |arphi_0 - arphi_0|arphi_0
angle \,, ext{ with } |arphi_0
angle \,, ext{ with } |arphi_0
angle \,. \end{aligned}$$

The method of collective coordinates developed in the study of strong-coupling theory is used for the quantization of the kink solution of a two-dimensional nonlinear field theory. The position of the kink is treated as a collective coordinate, which represents the position of a particle. It is separated from the rest of the coordinates, which represent the internal degrees of freedom of an extended particle. Two similar but different methods are presented; the one is nonrelativistic and suited for the weak-coupling limit, while the other is relativistic.

$$S_{\rm eff} = \int dt [\bar{S} \ S_z \dot{\varphi}_0 - H(\varphi_0, S_z)]$$

Conjugate Momentum

Conjugate momentum

Generator of rotations

$$S_z = \int d\mathbf{r} (1 - m_z)$$
$$\{S_z, \Phi\} = -\partial_{\phi} \Phi$$

Skyrmion Helicity Quantization

VOLUME 11, NUMBER 10

Extended particles in quantum field theories*

J.-L. Gervais Laboratoire de Physique Theorique de l'Ecole Normale Superieure 75005 Paris, France

B. Sakita

Department of Physics, The City College of The City University of New York, New York, New York 10031 (Received 13 January 1975)

15 MAY 1975 $e^{i\mathcal{S}_{eff}(\varphi_0,S_z)\tilde{Z}}$ $egin{aligned} D &= \delta(\mathbf{r}-\mathbf{r'}) \ \dot{\phi}_0 &+ \int dr^2 \chi^* \dot{\chi} \end{bmatrix} \end{aligned}$

Collective Coordinate Operators

$$\hat{\varphi}_{0}, \hat{S}_{z} \quad [\hat{\varphi}_{0}, \hat{S}_{z}] = i/\bar{S}$$

 $\hat{S}_{z}|s\rangle = (s/\bar{S})|s\rangle$
 $\hat{\varphi}_{0}|\varphi_{0}\rangle = \varphi_{0}|\varphi_{0}\rangle, \text{ with } |\varphi_{0}\rangle = |\varphi_{0} - i\varphi_{0}|\varphi_{0}\rangle$

Quantum Hamiltonian

Christina Psaroudaki

Potential Engineering is experimentally feasible with current technology

FeGe thin plate under uniaxial tensile strain

Christina Psaroudaki

Potential Engineering

Electric Field

Electric dipole

$$-\mathbf{e}_{ij} imes (\mathbf{S}_i imes \mathbf{S}_j)$$

H. Katsura , et al., *Phys. Rev. Lett.* **95** 057205 (2005)

Electric Polarization

 $\mathbf{P} = \sum \mathbf{p}_i$

Magnetic Field Gradient

A. Casiraghi, et al. Commun. Phys. 2, 145 (2019

Helicity-Qubit

$V(\varphi_0) = \kappa_x \cos 2\hat{\varphi}_0 - E_z \cos \hat{\varphi}_0 + h_\perp \sin \hat{\varphi}_0$

es of Magnetic Skyrmions"

Helicity-Qubit

$V(\varphi_0) = \kappa_x \cos 2\hat{\varphi}_0 - E_z \cos \hat{\varphi}_0 + h_\perp \sin \hat{\varphi}_0$

Christina Psaroudaki

S_z-Qubit

Universal Quantum Computing

Single-qubit unitary operations $U_i(\theta)$

Christina Psaroudaki

Single-Qubit Gates

 $H_{\rm rot}$ **Rotating Frame**

In-phase pulses

$$U_x(t) = e^{-\frac{i}{2}t}$$

Electric Field Protocol $H_{\rm EF} = E_z(t)\hat{\sigma}$ T-Gate $U_T = e^{-i\pi/8}U_Z(\pi/4)$

Christina Psaroudaki

$\mathcal{F}_{\text{ext}} = \int d\mathbf{r} \, \mathbf{B}(\mathbf{r}, t) \cdot \mathbf{m}(\mathbf{r}, t)$

$$\rightarrow H \sim \cos(\omega t + \phi) f(t) \cos(\hat{\varphi}_0)$$
External field External field External phase
$$\begin{array}{c} f requency \\ f requency \\ \hline \\ f requency \\ f req$$

 $artheta(t) \hat{\sigma}_x$

 $\vartheta(t) = -\Omega \int_0^t f(t')dt'$ $U_y(t) = e^{-\frac{i}{2}\vartheta(t)\hat{\sigma}_y}$

C. Psaroudaki and C. Panagopoulos, *Phys. Rev. Lett.* **127**, 067201 (2021)

$$\hat{\sigma}_{z} \qquad U_{Z}(\theta) = \exp\left[-\frac{i}{\hbar}\hat{\sigma}_{z}\int_{0}^{t_{0}}E_{z}(t)dt\right] = \exp\left[-\frac{i\theta}{2}\hat{\sigma}_{z}\right]$$
Hadamard-Gate
$$U_{H} = -iU_{Z}(\pi/2)U_{X}(\pi/2)U_{Z}(\pi/2)$$
J. Xia, et al., *Phys. Rev. Lett.* **130** 1062

Interaction energy

$$\mathcal{F}_{ ext{int}} \,=\, J_{ ext{int}} \int_{f r} {f m}_1 \,\cdot\, {f m}_2$$

Qubit Hamiltonian

$$H_{\rm int} = -J_{\rm int}' \cos(\varphi_1 - \varphi_2)$$

$$H_{ ext{int}} = -\mathcal{J}_{ ext{int}}^x \hat{\sigma}_x^1 \hat{\sigma}_x^2 - \mathcal{J}_{ ext{int}}^z \hat{\sigma}_z^1 \hat{\sigma}_z^2 \qquad \mathcal{J}_{ ext{int}}^x \ll \mathcal{J}_{ ext{int}}^z$$

Time-dependent

Two Qubit Gates

C. Psaroudaki and C. Panagopoulos, *Phys. Rev. Lett.* **127**, 067201 (2021)

$$\int_{0}^{t_{0}} H_{\text{Ising}}(t) dt \bigg] = \exp\left[-\frac{i\theta}{2}\sigma_{z}^{1}\sigma_{z}^{2}\right] \left[\mathcal{I}_{\text{int}}^{z} = \frac{\hbar\theta}{2t_{0}} \quad \text{for } 0\right]$$

$$U_{\rm CZ} = e^{i\pi/4} U_Z^{(1)}(\pi/2) U_Z^{(2)}(\pi/2) U_{\rm ZZ}(-\pi/2)$$

$$U_{\rm CNOT}^{1 \to 2} = U_{\rm H}^{(2)} U_{\rm CZ} U_{\rm H}^{(2)}$$

Two Qubit Gates via Magnons

Xue-Feng Pan, et al., Phys. Rev. Lett. **132**, 193601 (2024)

C. Psaroudaki and D. R. Candido, in preparation

M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatté PRX Quantum 2, 040314 (2021)

(a)

Longitudinal relaxation
$$\Gamma_1 = T_1^{-1}$$

Transverse relaxation $\Gamma_2 = T_2^{-1} = \frac{1}{2}\Gamma_1 + \Gamma_{\varphi}$

Figure from "Quantum Engineer's Guide to Superconducting Qubits", P. Krantz, et al., Applied Physics Reviews 6, 021318 (2019).

Landau-Lifshitz-Gilbert Equation

$$\dot{\mathbf{m}} = \gamma(-\delta \mathcal{F}/\delta \mathbf{m}) \times \mathbf{m} + \alpha \mathbf{m} \times \dot{\mathbf{m}}$$

$$-\dot{S}_{z} + \frac{\partial \mathcal{F}}{\partial \varphi_{0}} + \alpha_{\varphi_{0}} \dot{\varphi}_{0} = 0$$
$$\dot{\varphi}_{0} + \frac{\partial \mathcal{F}}{\partial S_{z}} + \alpha_{S_{z}} \dot{S}_{z} = 0$$

Christina Psaroudaki

Decoherence

$$\hat{H}_q = -\frac{1}{2}\hbar(\omega_q\hat{\sigma}_z + \xi_z(t)\gamma_z\hat{\sigma}_z + \xi_\perp(t)\gamma_\perp)$$

$$\Gamma_1 = \frac{\gamma_{\perp}^2}{\hbar^2} S_{\perp}(\omega_q) \qquad \qquad \Gamma_{\varphi} = \frac{\gamma_z^2}{\hbar^2} S_z$$

$$H_q = -\omega_q \hat{\sigma}_z + \xi_\perp(t) \gamma_\perp \hat{\sigma}_\perp + \xi_z(t) \gamma_z$$

$$\Gamma_1 = \gamma_\perp^2 S_\perp(\omega_q) = \gamma_\perp^2 \omega_q \coth(\frac{\beta \omega_q}{2})$$

$$\Gamma_\varphi = \gamma_z^2 S_z(0) = \gamma_z^2 2/\beta$$

Transition Frequency $\omega_q \approx 2-25~\mathrm{GHz}$ Anharmonicity $\omega_{12} \approx 300 \text{ GHz}$ $T_1, T_2 \approx 0.5 \ \mu s$ **Decoherence Time** Temperature T = 100 mK**Critical Temperature** $T_c = 2.5K$ $\alpha = 10^{-5}$ **Gilbert Damping Skyrmion Size** $\lambda \approx 10a$ **Effective Spin** $\bar{S} = 10$

Decoherence

 $\hat{\sigma}_z$

M. Kjaergaard, et al., Annual Reviews of Condensed Matter Physics **11**, 369-395 (2020)

Magnetic texture qubits

So Takei and Masoud Mohseni, Phys. Rev. B 97, 064401 (2018)

Meron Qubit

J. Xia, et al., Commun Mater **3**, 88 (2022)

Christina Psaroudaki

Ji Zou, et al., Phys. Rev. Research 5, 033166 (2023)

Host material	Host material Level of maturity		Number of coupled qubits	Coherence time	Readout method and speed	
				(Contraction of the contraction		
Defects and III-V	High	1.7 K – 300 K	7	ms – mins	Optical, 1 – 100 ns	
Si/Ge QDs and Si donors	High	4 K	6	ms – s	Electrical, < 1 ns	
Spins in superconductors	High	~10 mK	2	ns	Microwave, 10 – 100 ns	
Magnetic Skyrmions	Medium	~ a few K	Concept stage	μs	NV microscopy, scattering, TMR	
Emerging 2D materials	Low	~50 mK	Concept stage*	Not yet demonstrated	Electrical, 1 µs	
Topological materials	Low	~20 mK	Concept stage	ns	Electrical or interference	

Materials for Quantum Technologies: a Roadmap for Spin and Topology

N. Banerjee, et al. arXiv:2406.07720 (2024)

MQT in Josephson Junctions and Molecular Magnets

M. H. Devoret, J. M. Martinis, and J. Clarke, *Phys. Rev. Lett.* 55, 1908 (1985)

J. M. Martinis, M. H. Devoret, and J. Clarke, *Phys. Rev. Lett.* 55, 1543 (1985)

Christina Psaroudaki

Macroscopic Quantum Phenomena

<u>C. Psaroudaki</u> and C. Panagopoulos,

Skyrmion Helicity: Quantization and Quantum Tunneling Effects, Phys. Rev. B 106, 104422 (2022)

Christina Psaroudaki

 $V(\varphi_0) = \kappa_x \cos 2\hat{\varphi}_0 - E_z \cos \hat{\varphi}_0 + h_\perp \sin \hat{\varphi}_0$

Macroscopic Quantum Tunneling

Macroscopic Quantum Coherence

$$Z_E(arphi_s, arphi_s, eta) = \sqrt{rac{2\mathcal{M}\omega_b}{\pi}} e^{-eta\omega_b} \cosh(\Delta E/\delta)$$

 $\Delta E \approx 10 \text{ MHz}$

D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVincenzo, and D. Loss *Phys. Rev. Lett.* **71**, 4279 (1993)

Macroscopic Quantum Oscillation

Spin-Parity Effect

W. Wernsdorfer and R. Sessoli, *Science* **284**, 133 (1999).

D. Loss, D. P. DiVincenzo, and G. Grinstein, Phys. Rev. Lett. 69, 3232 (1992).

J. von Delft and C. L. Henley, Phys. Rev. Lett. **69**, 3236 (1992).

Candidate Materials

R&D path	Magne skyrmi materi	suitable skyr materials for qu
-	on	Skyrmion neuro

_

Frustrated magnetic syste suitable skyrmions hos materials for quantum op	ems and Int sting suppo erations	erconnects orting skyrmion textures	Readout and contro of skyrmion qubits	Error correction and noise mitigation	Scalable fabrication of skyrmion quantum devices and architectures
Skyrmion neuromorphic components	Domain wall qubits	Skyrmion qubits	Meron/Skyrmion texture qubits	Skyrmion quantum logic gates	Quantum neuromorphic components

Gd_2PdSi_3 $Gd_3Ru_4Al_2$			
RGa ₂ ErSi ₂	S		
TbGa ₂	S		
NiGa ₂ S ₄	٨		
α -NaFeO ₂	fı		
Fe _x Ni _{1-x} Br ₂	fı		
$Pb_2VO(PO_4)_2$	f		

C. Psaroudaki, and C. Panagopoulos., Skyrmion Qubits: Challenges For Future Quantum Computing Applications, Appl. Phys. Lett. 123, 260501 (2023)

Christina Psaroudaki

Fig. From N. Banerjee, et al. arXiv:2406.07720 (2024)

Rare earth-intermetallic, skyrmion hosting

- same space group
- signatures of nonlinear ground state
- Mott insulator on a triangular lattice
- rustrated triangular magnet
- rustrated triangular magnet
- frustrated square lattice
- Beyond bulk magnets: skyrmions in vdW ferromagnets?

Magnon Spectrum

Magnon Spectrum around Skyrmions in Frustrated Magnets^{*}

Adarsh Hullahalli[†] and Christos Panagopoulos[†] Christina Psaroudaki[‡]

Christina Psaroudaki

NTU Singapore NTU Singapore

MHI Chair of theory of Quantum information, ENS Paris

30

Skyrmion Lattice Ground State

Measurements of the topological Hall effect do not suggest the presence of a specific state type

Metastable States

A. O. Leonov, and M. Mostovoy, *Nature Comm.* **6**, 8275 (2015). MHI Chair of theory of Quantum information, ENS Paris

Magnon modes around Isolated Skyrmions

MHI Chair of theory of Quantum information, ENS Paris

Magnon modes around Skyrmion Lattices

DMI-systems

S. Diaz, et al., Phys. Rev. Research 2, 013231 (2020)

Frustrated-systems

Magnon modes around Skyrmion Lattices

Skyrmion-Skyrmion Interaction

Christina Psaroudaki

Frustrated-systems

arXiv:2410.11427

Condensed Matter > Mesoscale and Nanoscale Physics

[Submitted on 15 Oct 2024]

Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions

Alexander P. Petrović, Christina Psaroudaki, Peter Fischer, Markus Garst, Christos Panagopoulos

Uni Wyoming

Lawrence Berkeley National Laboratory

ITS Karlsruhe

I. Approaching the Quantum Limit with Classical Skyrmions Low-T phase diagrams and novel centrosymmetric materials

II. Quantum States in the Background of Classical Skyrmions Magnons, Electrons, Hybrid Superconductor-skyrmions, **Cavity Magnonics**

NTU Singapore

III. Quantum Skyrmions

Semiclassical Quantization, Macroscopic Quantum Effects, Skyrmion Qubit, Skyrmions in Quantum Magnetism

IV. Accessing Quantum Aspects of Skyrmions in the Laboratory

Materials and architectures, Experimental methods, Skyrmion Devices

A. Petrović, et al., arXiv:2410.11427v1 (2024)

Skyrmion Qubit Readout

Magnetic force microscopy

NV magnetometry

E. Arima, et al., Nanotechnology **26**, 125701 (2015) D. Rugar, et aal., Nature **430**, 329 (2004).

Y. Dovzhenko, et al., *Nature Comm.* 9, 2712 (2018)

CD- Resonant elastic X-ray

S. L. Zhang, et al., *Phys. Rev. Lett.* 120, 227202 (2018). **REXS+ FMR**: S. Pöllath, et al., *Phys. Rev. Lett*. 123, 167201 (2019).

I. Gimeno, et al., ACS Nano, 14, 8707 (2020) Z. Wang, et al., Nature **619**, 276 (2023)

Skyrmion Qubit Readout

Microwave Resonators

S. Khan, et al., *Phys. Rev. B* **104**, L100402 (2021)

Hybrid Systems

D. Lachance-Quirion, et al., Science 367, 425 (2020).

C. Psaroudaki, and C. Panagopoulos., Skyrmion Qubits: Challenges For Future Quantum Computing Applications, Appl. Phys. Lett. 123, 260501 (2023)

A Petrovic, <u>C. Psaroudaki</u>, P. Fischer, M. Garst, and C. Panagopoulos, *Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions* arXiv:2410.11427v1 (2024)

Discussion

