Fractional Topological Charges in 2D Magnets & Aharonov-Bohm scattering

Nina del Ser, Caltech (previously Cologne)

Romans failing to fire their cannon because they used fractional charges

(the talk will be about these charges, don't worry..)

Opening Credits

Collaborators

I. El Achchi

A. Rosch

V. Lohani

Funding

28/11/2024

Paper

"Fractional topological charges in twodimensional magnets"

DOI:10.1103/PhysRevB.110.094442 (2024)

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

Structure of the talk

1. Background

- 2. Fractional topological charges in magnets
- 3. Scattering of magnons from fractional charges (Aharonov-Bohm effect)

Can we always map a **sphere** to a **plane**?

Stereographic projection

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

W.

Stereographic projection uses

Stereographic technique illustrated by Rubens, 1613

Sanson's Map of the World, 1691

Can we always map a **plane** to a **sphere**?

No, not if M(x, y) multi-valued at $x, y = \infty$!

Connection to magnetism

• Slowly varying magnetic textures are well-described by a continuous magnetisation field M(r)

$$\boldsymbol{M}(\boldsymbol{r}) = \begin{pmatrix} M_{\chi}(\boldsymbol{r}) \\ M_{y}(\boldsymbol{r}) \\ M_{z}(\boldsymbol{r}) \end{pmatrix} \quad \text{In 2D, } \boldsymbol{r} = \begin{pmatrix} \chi \\ y \end{pmatrix}$$

M(r) determined by minimising the **free energy** of the magnet

Free energy I

simplest case

$$F = \int \frac{J}{2} \boldsymbol{M} \cdot \nabla^2 \boldsymbol{M} \, dA$$

add some chiral, anisotropy, external *B*-field terms for more excitement...

ferromagnet

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

Quantifying "twisting"

• Define topological charge density

$$\rho_{\text{top}}(\boldsymbol{r}) = \boldsymbol{M} \cdot (\nabla_{\boldsymbol{x}} \boldsymbol{M} \times \nabla_{\boldsymbol{y}} \boldsymbol{M})$$

$$(M=1)$$

$$\frac{d\Omega}{M(r+dy)}$$

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

 $\mathrm{d}\Omega = \mathrm{d}x \,\mathrm{d}y \,\rho_{\mathrm{top}}$

Quantifying "twisting" – topological charge

- Define total topological charge ${\boldsymbol{Q}}$

$$Q = \frac{1}{4\pi} \int dx \, dy \, \rho_{\text{top}} \left(\boldsymbol{r} \right) = \frac{1}{4\pi} \int d\Omega$$

Q preserved under smooth local deformations (no tears, no singularities)

Q mod *Z* determined entirely by boundary magnetisation!

Calculating Q for skyrmions

$$Q = \frac{1}{4\pi} \int dx \, dy \, \rho_{\text{top}} \left(\boldsymbol{r} \right) = \frac{1}{4\pi} \int d\Omega$$

Option 1) brute force: insert
$$\mathbf{M} = \begin{pmatrix} \sin \theta(\mathbf{r}) \cos \phi(\mathbf{r}) \\ \sin \theta(\mathbf{r}) \sin \phi(\mathbf{r}) \\ \cos \theta(\mathbf{r}) \end{pmatrix}$$
 with $\theta(\mathbf{r} = 0) = \pi, \theta(\mathbf{r} = \infty) = 0, \phi = \chi + h$
into Q & calculate

Option 2) just visualise it!

Calculating Q for skyrmions

Option 2) just visualise it!

M(*r*) wraps **once** around the sphere

Néel skyrmion

 $Q = \frac{1}{4\pi} \int dx \, dy \, \rho_{\text{top}} \left(\boldsymbol{r} \right) = \frac{1}{4\pi} \int d\Omega$

Q preserved under smoothlocal deformations(no tears, no singularities)

Bloch skyrmion

Argument valid for any smooth magnetic texture with **single-valued** $\lim_{r \to \infty} M(r)$

 \rightarrow all such textures have $Q \mod 1 = 0$

What about **multi-valued** $\lim_{r \to \infty} M(r)$?

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

Calculating Q when $\lim_{r \to \infty} M(r)$ is multi-valued

scattering (SPICE & SPIN+X online seminar series)

2.Examples of fractional topological charges in magnets

Fractional Vortex

$$F = \int J\left(\frac{1}{2}\nabla_i M_j \nabla_i M_j - b_0 M_z + \kappa_u M_z^2\right) dA$$

F minimised when *M* lies on a cone with $M_z = \frac{b_0}{2\kappa_u}$

$$Q = \frac{1}{2} \left(1 - \frac{b_0}{2\kappa_u} \right)$$

But, hard to realise experimentally...

Exception: skyrmion decaying into two (bi)merons, see e.g.

"Spontaneous Voretx-Antivortex Pairs and their topological transitions in a chiral-lattice magnet" Adv. Mater. 2024, 36, 2306441

"Reversible Transformation between Isolated Skyrmions and Bimerons" Nano Lett. 2022, 22, 21, 8559–8566

Q = 1/2

1. Background 2. Fractional topological charges in magnets

See also "Non-Abelian Vortices in Magnets" (arXiv:2205.15264) by F. Rybakov and O. Eriksson

$$F = \int J\left(\frac{1}{2}\nabla_i M_j \nabla_i M_j - \kappa_c \left(M_x^4 + M_y^4 + M_z^4\right)\right) dA$$

1. Background 2. Fractional topological charges in magnets

Exploding Skyrmion

Exploding Skyrmion – negative κ_c

$$F = \int \left(\frac{J}{2} \nabla_i M_j \nabla_i M_j \pm D \mathbf{M} \cdot \nabla \times \mathbf{M} - B_0 M_z - \kappa_c (M_x^4 + M_y^4 + M_z^4) \right) dA \quad \kappa_c = -3.2$$

Easy axes $(\pm 1, \pm 1, \pm 1)$

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

Domain Walls with Broken Symmetry

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

3.Aharonov-Bohm scattering

What makes topological magnetic textures interesting?

 Electrons and magnons traveling through the texture pick up **Berry phases**

 \rightarrow Emergent EM fields

Berry phases - magnons

 $\{a(\mathbf{r}), a^*(\mathbf{r}')\} = \delta(\mathbf{r}, \mathbf{r}')$ enforces spin commutation relation $\{M_j(\mathbf{r}), M_k(\mathbf{r}')\} = i \epsilon_{ijk} M_i(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}')$

$$(e_{+}+e_{-})$$

$$i(e_{+}-e_{-}) \qquad M = UM', \quad U = \begin{pmatrix} e_{-} & e_{+} & e_{3} \\ \downarrow & \downarrow & \downarrow \end{pmatrix}, M' = \begin{pmatrix} a \\ a^{*} \\ 1-a^{*}a \end{pmatrix}$$

Substitute into exchange part of free energy F ...

$$\frac{1}{2}J(\nabla_i \boldsymbol{M})^2 = \frac{1}{2}J(U\nabla_i \boldsymbol{M}' + \nabla_i U\boldsymbol{M}')^2$$

Only care about number-conserving terms $\sim a^* a$

 \rightarrow only keep **diagonal** part of $U^{-1} \nabla_i U$

$$A_i = -\frac{i\hbar}{q} (U^{-1} \nabla_i U)_{1,1}$$

 $e_3(r,t), e_{\pm}(r,t)$ functions of r, t!

 \boldsymbol{e}_3

$$-\frac{1}{\hbar^2}J|(p_i+qA_i)a|^2 \quad \text{with}$$

 $=\frac{1}{2}J((\nabla_i + U^{-1}\nabla_i U)M')^2$

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

Berry phases - magnons $A_{i} = -\frac{i\hbar}{q} (U^{-1}\nabla_{i}U)_{1,1} = \frac{\hbar}{q} \cos(\theta)\nabla_{i}\phi$ Can we **distinguish** fractional and integer Φ_{m} in a magnon scattering experiment?

In 2D:
$$\rightarrow B_z(\mathbf{r}) = \frac{\hbar}{q} \sin(\theta) \left(\nabla_x \theta \nabla_y \phi - \nabla_y \theta \nabla_x \phi \right) = \frac{\hbar}{q} \rho_{\text{top}}(\mathbf{r})$$

Note: for electrons

In units of flux quantum
$$\Phi_0 = \frac{2\pi\hbar}{q}$$
, $B_z(r) = \frac{1}{2\pi} \rho_{\rm top}(r)$

 $\rightarrow \Phi_m = 2Q$

 $\Phi_e = Q$

(half-)integer Q seen by magnon as integer flux

(similar derivation, but *U* is a 2x2 matrix)

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

Magnon scattering

- Incoming magnons are scattered, experiencing change in their total momentum, ΔP_m
- Net force **F** on fractional charge given by $F = -\frac{\mathrm{d}P_m}{\mathrm{d}t}$

Scattering force

(see App.F of paper for derivation and prefactors)

28/11/2024

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

Scattering force

Fractional charges in 2D magnets & Aharonov-Bohm scattering (SPICE & SPIN+X online seminar series)

29

Conclusions & Outlook

Summary

- Magnetic textures with fractional topological charge occur naturally in generic systems
- They **singularly** scatter low energy magnons and electrons

 $2Q \notin \mathbb{Z}$

Paper

"Fractional topological charges in two-dimensional magnets" NdS, I. el Achchi & A.Rosch DOI:10.1103/PhysRevB.110.0944

Future

- Can we stabilize the exploding skyrmion and create **bound states** of fractional charges?
- How would such states respond to driving?

Bound state of 3 driven skyrmions