EXPLORING THE DYNAMICS OF d-d EXCITATIONS IN FePS₃: A JOURNEY THROUGH MAGNETO-OPTICAL AND PHOTOELECTRON SPECTROSCOPY INVESTIGATIONS

Mirko Cinchetti | SPICE seminar | 26.06.2024

Optical control of quantum materials using elementary excitations

Molecular compounds, proximity effects Exciton-mediated optical control of GHz spin dynamics Advanced Materials Interfaces **10**, 2300236 (2023) Advanced Materials **35**, e2205698 (2023)

Exciton-magnon coupling in NiO generate THz spin dynamics Physical Review Letters 127, 077202 (2021)

Spin-charge correlations in the altermagnet MnTe generate THz lattice and spin dynamics

New Journal of Physics **2020**, 22, 083029 Physical Review B **2021**, 104, 224424 Physical Review Materials **2023**, 7, 054601 Advanced Materials **2024**, 2314076

TMPS₃ CrSBr

Localized d-d excitations generate THz spin dynamics in \mbox{FePS}_3

Advanced Materials **2023**, 35, 2208355 Materials Today Electronics **2023**, 6, 100061 Physical Review Materials **2024**, 014408 arXiv:2402.03018 **2024**

Molecular compounds, proximity effects

Exciton-mediated optical control of GHz spin dynamics in Co/C60 On arXiv soon!

Bulk antiferromagnetic dielectrics: THz spin dynamics

Spin-charge correlations in the altermagnet MnTe generate THz spin dynamics

New Journal of Physics **2020**, 22, 083029 Physical Review B **2021**, 104, 224424 Physical Review Materials **2023**, 7, 054601 Advanced Materials **2024**, 2314076 NiO

Exciton-magnon coupling in NiO enhance THz and GHz magnon amplitude

Physical Review Letters 127, 077202 (2021)

2D antiferromagnetic semiconductors: TMPS₃, CrSBr

This talk: Localized d-d excitations generate THz spin dynamics in FePS₃

Advanced Materials **2023**, 35, 2208355 Materials Today Electronics **2023**, 6, 100061 Physical Review Materials **2024**, 014408 arXiv:2402.03018 **2024**

d-d excitations are ubiquitous

Color of TM-oxides, cathalysis Spin-crossover complexes *Nature* **1960**, *187*, 493 Coordination Chemistry Reviews **2017**, 176, 346

Electron-phonon bound states Nat. Commun. 2022, 13, 98 in NiPS₃

Zhang-Rice singlet/triplet Nature **2020**, 583, 785 Superconductivity in Cu-O-based perovskites

THz magnon generation in $\rm NiPS_3$

Sci. Adv. 2021, 7, eabf3096.

The TMPS₃ family: 2D antiferromagnetic semiconductors

Material	FePS ₃	NiPS ₃	CoPS ₃	MnPS ₃
Bandgap	1.5 eV	1.6 eV	1.4 eV	3.5 eV
d-electrons (TM ²⁺)	d ⁶	d ⁸	d ⁷	d ⁵
T _N	118 K	155 K	132 K	78 K
Intralayer coupling	zz-AFM	zz-AFM	zz-AFM	Neél-AFM
Interlayer coupling	AFM	FM	FM	FM
2D magnetism model	2D Ising	XY-model	XY-model	Heisenberg

The TMPS₃ family: crystal structure

Materials Research Bulletin 20, 1181 (1985) Physical Review B 94, 184428 (2016) Advanced Functional Materials (2018): https://doi.org/10.1002/adfm.201802151

The TMPS₃ family: magnetic structure

d-d excitations in the $TMPS_3$ family: optical absorption spectroscopy

Transition	Energy (eV)
⁵ T _{2g} → ⁵ E _g (D)	1.08
⁵ T _{2g} → ³ T _{1g} (H)	1.78
⁵ T _{2g} → ³ T _{2g} (H)	2.14
⁵ T _{2g} → ³ T _{1g} (H)	2.46
${}^{5}T_{2g} \rightarrow {}^{3}T_{2g}$ (F)	2.58
${}^{5}T_{2g} \rightarrow {}^{3}T_{1g}(P)$	2.84

Piacentini, et al., Chemical Physics 72, 61-71 (1982)

Open questions: Nature? Excitation? Lifetime? Decay mechanisms? Relaxation pathways?

Part 1

THE METHODS

Complementary experimental methods

 Time-resolved magnetooptical spectroscopy

Review of Scientific Instruments 2020, 2, 113001

Time-resolved ARPES

Advanced Physics Research **2023**, *2*, 2200016 https://doi.org/10.1364/opticaopen.26124829.v1

Complementary experimental methods

 Time-resolved magnetooptical spectroscopy Time-resolved ARPES

Degrees of freedom

Electronic Lattice Magnetic Spectral function Quasiparticles (Excitons, d-d transitions)

Review of Scientific Instruments 2020, 2, 113001

Rotation $\theta \sim U_A - U_B$

Time-resolved magneto-optical spectroscopy

Degrees of freedom Signal Intensity $(\Delta T/T) / (\Delta R/R)$ Electronic Lattice (Magnetic) Polarization rotation $\Delta \theta$ (sensitivity ~ 70 µdeg) Magnetic ~ M (Kerr, Faraday) ~|2

Review of Scientific Instruments 2020, 2, 113001

Time-resolved ARPES: momentum microscope coupled to a fs-XUV source

f_{rep} 540 – 600 kHz

9th harmonic @ 21.6 eV

Advanced Physics Research **2023**, 2, 2200016 https://doi.org/10.1364/opticaopen.26124829.v1

tr-ARPES setup performance: measurements on a WS₂ crystal

Ground state

Excited state after pump at 1.2eV

Energy resolution < 49 meV; momentum resolution <0.005 Å⁻¹ Lateral resolution <40 nm

Advanced Physics Research 2023, 2, 2200016

Energy resolution < (107 ± 2) meV Time-resolution < (49 ± 17) fs

https://doi.org/10.1364/opticaopen.26124829.v1

Part 2

ELECTRONIC STRUCTURE (ground state of the TMPS₃ family)

μ - ARPES : FePS₃ valence band characterization

1.65 A = 1.65A = 1.65

intensity

Momentum maps

Momentum map @ 5.15 eV below the VBM

Bulk and surface Brillouin Zone

$\mu\text{-}$ ARPES : valence band characterization

μ - ARPES : valence band characterization

k_x

Kχ

FePS₃ valence band characterization

Vniver§itat

València

Comparison between experimental data (cruvature alogorithm) and Hubbard-corrected density functional theory (DFT+U) calculations

Materials Today Electronics **2023**, 6, 100061

FePS₃ as a Mott-Hubbard insulator

FePS₃ can be understood as Mott-Hubbard insulator with the top of the valence band formed by Fe 3d states

Simplified model for understanding d-d excitations in $\rm FePS_3$ As ionic crystal: $\rm Fe^{2+}(PS_3)^{2-}$

Local description of the Fe 3d states: Fe²⁺ multiplet (3d⁶)

M. Piacentini, et al. Chemical Physics 61-71 (1982).

Ground state of the Fe²⁺ multiplet (3d⁶)

Fe²⁺3d⁶ multiplet in an octraedral ligand field Involved energies: crystal field and exchange Ground state: ⁵T_{2g}

d-d excitations: phonon and magnon generation

I : spin conserving transition → modifies the cristal field: dynamic Jahn-Teller II : not spin conserving → phonon and magnon generation

OD excitations generate lattice and spin dynamics in a 2D material

Part 3

OPTICALLY INDUCED DYNAMICS

Time-resolved magneto-optical measurements on FePS₃

Characterization of the $FePS_3$ flakes

FePS₃ exfoliated on SiO|Si substrate h = 380 nm d ≈ 50 µm

Atomic force microscopy

Characterization of the TMPS₃ flakes

NiPS₃

Physical Review Materials 2024, 014408

Microscope pump-probe setup

Knife edge

FePS₃ flake-below band gap excitation

FePS₃ • E_{gap} = 1.5 eV

Experiment

- E_{probe} = 1.45 eV
 - $E_{pump} = (0.83 1.08) eV$

resonant with ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$ transition

T= 10K

FePS₃ flake: results

Coherent contribution to the signal: oscillations at 3.2 THz

FePS₃ flake: results

Coherent contribution to the signal: oscillations at 3.2 THz Excitation of optical phonon modes, displacement of the Fe²⁺ atoms and of the ligands

FePS₃ flake: results

Phonon amplitude follows trend of optical absorption, including the degeneracy of the ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$ transition due to distortion of the ligands \rightarrow d-d transition plays a crucial role

Temperature dependence

Phonon amplitude vanishes for $T>T_N$

Temperature dependence and zone-folding

Zone-folded phonon mode

Generation of zone-folded optical phonons @3.2 THz

WHAT ABOUT SPIN DYNAMICS?

Phonon-magnon hybridization

Liu et al. Phys. Rev. Lett. 127 (2021)

Phonon-magnon hybridization: experiments on a FePS₃ crystal

Liu et al. Phys. Rev. Lett. 127 (2021)

 $FePS_3 \, crystal$

Lower branch phonon-magnon (PML) Upper branch phonon-magnon (PMU)

Bulk FePS₃: results

Emergence of upper and lower branch of the phonon-magnon mode

Phonon-magnon hybridization

The story so far

Generation of (zone folded) optical phonons @3.2 THz

Hybrid phonon-magnon mode generated @9T

TRACING d-d TRANSITIONS ON ULTRAFAST TIME-SCALES BY trARPES

Part 4

Uncovering d-d transitions dynamics with trARPES

Transition			
Iransition	Energy (ev)		
⁵ T _{2g} → ⁵ E _g (D)	1.08	Below band gap	
⁵ T _{2g} → ³ T _{1g} (H)	1.78		
⁵ T _{2g} → ³ T _{2g} (H)	2.14		
⁵ T _{2g} → ³ T _{1g} (H)	2.46	Above band gap	
⁵ T _{2g} → ³ T _{2g} (F)	2.58		
⁵ T _{2g} → ³ T _{1g} (P)	2.84		

Uncovering d-d transitions dynamics with trARPES

Below band gap excitation (E_{pump} = 1.2 eV) Above band gap excitation (E_{pump} = 2.4 eV)

Uncovering d-d transitions with trARPES: below band gap excitation

Below band gap excitation (E_{pump} = 1.2 eV)

Momentum integrated transient ARPES signal (DOS) above the valence band maximum (VBM) → excited state dynamics

Origin of the trARPES signal: momentum maps

Unoccupied states \rightarrow excited state

- 0.3 eV

+ 0.8 eV

Occupied states \rightarrow ground state

Origin of the trARPES signal: momentum maps

Occupied states \rightarrow ground state

Origin of the trARPES signal: fingerprint of the ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$ transition

Transition	Energy (eV)	
⁵ T _{2g} → ⁵ E _g (D)	1.08 I	
⁵ T _{2g} → ³ T _{1g} (H)	1.78	
⁵ T _{2g} → ³ T _{2g} (H)	2.14	
⁵ T _{2g} → ³ T _{1g} (H)	2.46	
⁵ T _{2g} → ³ T _{2g} (F)	2.58	
⁵ T _{2g} → ³ T _{1g} (P)	2.84	

Occupied states \rightarrow ground state

 ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$ transition is at ~1.1 eV

Fingerprint of the ${}^{5}T_{2g} \rightarrow {}^{5}E_{g} d-d transition in momentum space!$

Transition	Energy (eV)
⁵ T _{2g} → ⁵ E _g (D)	1.08 I
⁵ T _{2g} → ³ T _{1g} (H)	1.78
⁵ T _{2g} → ³ T _{2g} (H)	2.14
⁵ T _{2g} → ³ T _{1g} (H)	2.46
${}^{5}T_{2g} \rightarrow {}^{3}T_{2g}$ (F)	2.58
${}^{5}T_{2g} \rightarrow {}^{3}T_{1g} (P)$	2.84

Equilibrium spectrum of the lesser Green function and spectrum with the excited state $|E_{ex} = 1.1 \text{ eV}, S = 2$

Intrinsic dynamics of the ${}^{5}\mathrm{T}_{2g}$ \rightarrow ${}^{5}\mathrm{E}_{g}$ transition

Instantaneous excitation within experimental resolution of (49 ± 17) fs

Uncovering d-d transitions with trARPES: above band gap excitation

Above band gap excitation $(E_{pump} = 2.4 \text{ eV})$

Momentum integrated transient ARPES signal (DOS) above the valence band maximum (VBM) → excited state dynamics

Conduction band

Above band gap excitation: excitations and decay-times

∆t / ps

Above band gap excitation: excitations and decay-times

Above band gap excitation: excitations and decay-times

Decay mechanisms of the ${}^{5}T_{2g} \rightarrow {}^{3}T_{1g}$ transition

 $\tau_{red,1} = 46 \pm 34 \text{ fs}$

Hopping between neighboring sites

 $\tau_{red,2} = 1273 \pm 268 \text{ fs}$

Spin-orbit-mediated on-site spin-flip

Decay mechanisms of the ${}^{5}T_{2g} \rightarrow {}^{3}T_{1g}$ transition

 $\tau_{\text{red},2} = 1273 \pm 268 \text{ fs}$

Spin-orbit-mediated on-site spin-flip

DFT+ U+ SOC λ_{SOC} (Fe²⁺)= 14.04 meV $\rightarrow \tau_{SOC}$ (Fe²⁺)= h/ λ_{SOC} \cong 300 fs Mixing of the ⁵E_g and ³T_{1g} states (energy separation 0.72 eV) Similar to NiPS₃ in PRB 46, 5134 (1992) λ_{SOC} = 34.7 meV, $\Delta E(^{1}E_{g} - ^{3}T_{2g})$ =0.98eV

Ultrafast dynamics for off-resonant excitation: build-up time

Conduction band: instantaneous

⁵T_{2g} → ⁵E_g transition exhibits a quicker buildup (22 fs) compared to the spin-forbidden ⁵T_{2g} → ³T_{1g} transition (48 fs)

The last part of the story: summary trARPES experiments arXiv:2402.03018 2024

Fingerprint in momentum space of d-d transitions Transitions with energy above band gap can be also detected Ultrafast dynamics (buildup and decay) accessible!

Conclusions

Free ion O_h

d-d transitions in FePS₃ explored by trMO and trARPES

Advanced Materials 2023, 35, 2208355 Materials Today Electronics 2023, 6, 100061 Physical Review Materials 2024, 014408 arXiv:2402.03018 2024 https://doi.org/10.1364/opticaopen.26124829.v1

Generation of (zone folded) optical phonons @3.2 THz Hybrid phonon-magnon mode generated @9T

Fingerprint in momentum space of d-d transitions Ultrafast dynamics accessible!

Collaborations

fs-XUV setup:

C. Saraceno, RUB

TMPS₃

- F. Anders, TU Dortmund
- A. Bonanni, JKU Linz
- J. Baldovì, D. Cordoba, University of Valencia
- E. Coronado, S. Manas, University of Valencia
- D. Bossini, Uni Konstanz
- A. Kalashnikova

Co/C60

- A. Dediu, M. Benini, CNR Bologna
- T. Mertelj, JSI Lubljana

MnTe

- F. Anders, G. Uhrig, Z. Wang TU Dortmund
- G. Springholz, M. Hajlaoui, JKU Linz
- D. Bossini, Uni Konstanz
- NiO
- D. Bossini, Uni Konstanz
- S. Bonetti, Ca' Foscari University of Venice

Jonah Nitschke

Umut Parlak

Fabian Mertens

Financial support

MERCUR Kooperation Towards an UA Ruhr Ultrafast Laser Science Center

DFG-TRR160 Coherent Manipulation of Interacting Spin Excitations in Tailored Semiconductors

ERC Consolidator Coherent optical control of multi-functional nano-scale hybrid units

SINFONIA FET Selectively activated INFOrmation techNology by hybrId organic interfAces

Conclusions

Free ion O_h

d-d transitions in \mbox{FePS}_3 explored by trMO and trARPES

Advanced Materials 2023, 35, 2208355 Materials Today Electronics 2023, 6, 100061 Physical Review Materials 2024, 014408 arXiv:2402.03018 2024

Generation of (zone folded) optical phonons @3.2 THz Hybrid phonon-magnon mode generated @9T

Fingerprint in momentum space of d-d transitions Ultrafast dynamics accessible!

Open PhD and postdoc positions!