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Bacterial motility

• Bacterial ability to swim using metabolic energy 

• Each single flagellum (helical appendage) has a rotary motor at the 
base that can turn clock- or anticlockwise 

• Small Reynolds number: Viscosity-dominated hydrodynamics; thus, 
continuous transduction of chemical into mechanical energy



Macroscopic mobility strategies

• Inertia dominated: Typically imparting momentum to the fluid by 
discrete events, such as vortex shedding, with inertial coasting in 
between

E. M. Purcell: "Fast or slow, it exactly retraces its trajectory and 
it's back where it started.” [without inertia]



From evolution to “intelligent” design

• Conversion of featureless electrochemical free energy into dynamic 
macroscopic configurations 

• Geometry is exploited to enable desired process via the reduction 
of structural symmetries

Pierre Curie:
“Asymmetry creates the phenomenon”

• Enable magnetic transport phenomena via geometry 

• Utilize topology of collective spin textures to transduce 
and store free energy 

• Interface with (thermo)electric input/output
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chirality-induced spin selectivity e↵ect, which arises from
the coupling of the electron linear momentum to spin de-
grees of freedom in chiral materials [60, 61]. Furthermore,
in the limit of strong spin-orbit coupling, dimensional
analysis suggests ⇣ ⇠ ~w�2

F /e, where �F is the Fermi
wavelength, e is the positive elementary electric charge,
and w is the width of the wire. We assume w � �F

and that w is small enough for ⌧ to be (approximately)
uniform over the wire width.

The work done on the magnetic texture is

�W =

Z
d` dt ⌧ · (m⇥ @tm) = ⇣Tj �Q, (7)

where �Q =
R
dtd`v · (J ⇥ n) is the vorticity flow across

the wire. The e↵ective vortex chemical potential is given
by µ ⌘ �W/�Q = ⇣Tj. In the high-temperature param-
agnetic regime, a linear relation µ / j should still hold,
albeit with a prefactor renormalized by thermal fluctua-
tions of |m|.
Vortex circuit elements.—Fig. 2 illustrates a possible

setup in which torsion gives rise to pumping of vorticity.
Here, a magnetic insulating membrane (which can either
be ferro- or antiferromagnetic) of thickness h and length
lm wraps around a cylindrical insulating core. A metal
wire of width w and thickness � is wrapped around the
cylindrical magnetic membrane of radius r as a uniform
helix with helix angle ✓. Systems with similar geometry,
in the form of rolled magnetic membranes, have been
fabricated [62]. The uniform helix has a constant torsion
T = sin(2✓)/2r, allowing electric current flow in the wire
to drive a vorticity flux J , which we assume is transverse
to the wire.

J can be decomposed into components orthogonal and
parallel to the z axis. The former accumulates winding
along z, which may unwind at the ends of the cylin-
der. The latter, on the other hand, builds up winding
azimuthally, which is energetically protected by the easy-
surface anisotropy. We are interested in the vortex cur-
rent flowing in the z direction, Iv = 2⇡r|J | sin ✓, which
is driven by the vortex motive force IR generated by the
electric current. Here,

R =
⇣Tlm
2⇡rw�

tan ✓ (8)

is the e↵ective drag coe�cient [59]. Di↵erent from our
previous works on energy storage using topological spin
textures [19, 20], R is unique to the nontrivial geometry
of this setup and is not present in flat systems. Upon
substitution of T = sin(2✓)/2r, we find R / sin2 ✓. In
the linear response, Iv / R, so ✓ = ⇡/2 maximizes the
vortex current.

The membrane behaves like a series RvCv circuit in
response to nonzero vortex flow, exhibiting an e↵ective
vortex resistance Rv and e↵ective winding capacitance Cv.
As dictated by the bulk-boundary correspondence, the

FIG. 2. Schematic of a minimal setup for geometrically con-
trolled vortex transport. A metallic wire is wrapped around
a cylindrical magnetic insulator membrane as a helix. An
applied electric current I induces vorticity flux J transverse
to the wire, resulting in vorticity current Iv along z. The side
panel indicates that this system realizes a battery.

vortex current “winds up” the magnetic texture, thereby
storing exchange energy. The sti↵ness of the magnetic
texture engenders Cv. On the other hand, Rv can arise
due to Gilbert damping, defects, and vortex-antivortex
collisions. Following Ref. [20], we estimate Cv and Rv

by exploiting the duality between the XY magnet and
two-dimensional electrostatics [57]. This yields

Cv =
1

A

r

2⇡hlm
, Rv =

1

�v

lm
2⇡r

, (9)

where ��1
v is the vortex resistivity and A is the magnetic

sti↵ness [59]. With the circuit elements R, Rv, and Cv in
hand, we set out to construct topological circuits [20].

Coupled topological circuits.—The setup we have been
discussing can be described by coupled vorticity and elec-
tric circuits, which are depicted in Fig. 3. The applied
electric current I in the wire supplies an e↵ective vortex
motive force IR to the vorticity circuit. This results
in build-up of winding and an e↵ective vortex voltage
Vv = �Q/Cv. The backaction of vortex dynamics on the
electrical response induces an electromotive force IvR on
the electric circuit, which is written down by invoking
Onsager reciprocity. We note that, like ordinary charge,
vorticity is even under time reversal. Kirchho↵’s law for
the coupled electrical and vorticity circuits is thus

✓
V
Vv

◆
=

✓
R+ L d

dt �R
�R Rv

◆✓
I
Iv

◆
. (10)

Here, V is the voltage supplying the current I, L is the
self-inductance, and R is the electrical resistance. The
resistance matrix is symmetric as dictated by Onsager
reciprocity, and positive-definite according to the second
law of thermodynamics [63, 64]. The latter constraint
enforces 0 < ⇠ < 1, where ⇠ ⌘ R2/RRv parameterizes
the relative strength of the o↵-diagonal to the diagonal
elements of the resistance matrix.
Fourier transforming Eq. (10) into the frequency do-



The energy-storage concept

YT and Xiao, PRL (2018)

• How to inject/extract such winding in 
practice? 

• Controlling symmetries: 
Heterostructure design vs curved 
geometry 

• Thermodynamic efficiency of the 
cross-talk between winding 
dynamics and electricity?



An appealing approach

If we establish practical means to push vorticity within a 2D system, winding 
would build up in the transverse direction (cf. phase slips in 2D superfluids)
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Vorticity-winding transmutation
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Q =

Z
d2r ⇢v ! 1

topological charge      labels 
winding homotopy classes in the 
strongly-ordered XY limit
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Geometry-enabled topological energy storage
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chirality-induced spin selectivity e↵ect, which arises from
the coupling of the electron linear momentum to spin de-
grees of freedom in chiral materials [60, 61]. Furthermore,
in the limit of strong spin-orbit coupling, dimensional
analysis suggests ⇣ ⇠ ~w�2

F /e, where �F is the Fermi
wavelength, e is the positive elementary electric charge,
and w is the width of the wire. We assume w � �F

and that w is small enough for ⌧ to be (approximately)
uniform over the wire width.

The work done on the magnetic texture is

�W =

Z
d` dt ⌧ · (m⇥ @tm) = ⇣Tj �Q, (7)

where �Q =
R
dtd`v · (J ⇥ n) is the vorticity flow across

the wire. The e↵ective vortex chemical potential is given
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agnetic regime, a linear relation µ / j should still hold,
albeit with a prefactor renormalized by thermal fluctua-
tions of |m|.
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setup in which torsion gives rise to pumping of vorticity.
Here, a magnetic insulating membrane (which can either
be ferro- or antiferromagnetic) of thickness h and length
lm wraps around a cylindrical insulating core. A metal
wire of width w and thickness � is wrapped around the
cylindrical magnetic membrane of radius r as a uniform
helix with helix angle ✓. Systems with similar geometry,
in the form of rolled magnetic membranes, have been
fabricated [62]. The uniform helix has a constant torsion
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to the wire.
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is driven by the vortex motive force IR generated by the
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R =
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is the e↵ective drag coe�cient [59]. Di↵erent from our
previous works on energy storage using topological spin
textures [19, 20], R is unique to the nontrivial geometry
of this setup and is not present in flat systems. Upon
substitution of T = sin(2✓)/2r, we find R / sin2 ✓. In
the linear response, Iv / R, so ✓ = ⇡/2 maximizes the
vortex current.

The membrane behaves like a series RvCv circuit in
response to nonzero vortex flow, exhibiting an e↵ective
vortex resistance Rv and e↵ective winding capacitance Cv.
As dictated by the bulk-boundary correspondence, the

FIG. 2. Schematic of a minimal setup for geometrically con-
trolled vortex transport. A metallic wire is wrapped around
a cylindrical magnetic insulator membrane as a helix. An
applied electric current I induces vorticity flux J transverse
to the wire, resulting in vorticity current Iv along z. The side
panel indicates that this system realizes a battery.

vortex current “winds up” the magnetic texture, thereby
storing exchange energy. The sti↵ness of the magnetic
texture engenders Cv. On the other hand, Rv can arise
due to Gilbert damping, defects, and vortex-antivortex
collisions. Following Ref. [20], we estimate Cv and Rv

by exploiting the duality between the XY magnet and
two-dimensional electrostatics [57]. This yields

Cv =
1

A

r

2⇡hlm
, Rv =

1

�v

lm
2⇡r

, (9)

where ��1
v is the vortex resistivity and A is the magnetic

sti↵ness [59]. With the circuit elements R, Rv, and Cv in
hand, we set out to construct topological circuits [20].

Coupled topological circuits.—The setup we have been
discussing can be described by coupled vorticity and elec-
tric circuits, which are depicted in Fig. 3. The applied
electric current I in the wire supplies an e↵ective vortex
motive force IR to the vorticity circuit. This results
in build-up of winding and an e↵ective vortex voltage
Vv = �Q/Cv. The backaction of vortex dynamics on the
electrical response induces an electromotive force IvR on
the electric circuit, which is written down by invoking
Onsager reciprocity. We note that, like ordinary charge,
vorticity is even under time reversal. Kirchho↵’s law for
the coupled electrical and vorticity circuits is thus

✓
V
Vv

◆
=

✓
R+ L d

dt �R
�R Rv

◆✓
I
Iv

◆
. (10)

Here, V is the voltage supplying the current I, L is the
self-inductance, and R is the electrical resistance. The
resistance matrix is symmetric as dictated by Onsager
reciprocity, and positive-definite according to the second
law of thermodynamics [63, 64]. The latter constraint
enforces 0 < ⇠ < 1, where ⇠ ⌘ R2/RRv parameterizes
the relative strength of the o↵-diagonal to the diagonal
elements of the resistance matrix.
Fourier transforming Eq. (10) into the frequency do-
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FIG. 3. Schematic of the vorticity (blue) and electric (red)
circuits, which are coupled through R (purple). R gives rise
to an e↵ective vortex motive force IR on the vorticity circuit
and, reciprocally, an electromotive force IvR on the electrical
response. Rv is tunable, allowing switching between vortex
conducting and insulating regimes. The side panel depicts
setups with positive and negative T.

main, we find the e↵ective impedance is

Z(!) ⌘ V (!)

I(!)
= R+ i!L� i!CvR2

1 + i!CvRv
. (11)

Similar to conventional RC circuits, here, ⌧ = RvCv =
(4⇡2Ah�v)�1 is the time scale for loading and discharging
vortices from the magnetic texture. In the high-frequency
regime, ! � 1/⌧ , the last term in Eq. (11) is approxi-
mated as �R2/Rv. The vorticity circuit functions as a
battery, reducing the e↵ective resistance of the electrical
circuit. In the low-frequency limit, ! ⌧ 1/⌧ , the vortic-
ity circuit acts like an inductor with e↵ective negative
inductance Lv = �CvR2. Impedance measurements of
the circuit in the low-frequency regime could pave a way
to probe the strength of the coupling between vortex and
charge currents. Similar impedance measurements on
helical-spin magnets have been performed to characterize
the current-driven dynamics of spin-helix structures [65].
Energy storage and e�ciency.—In addition to provid-

ing a means to measure ⇣, the setup depicted in Fig. 2
may also function as a battery. Operation of the battery
requires a mechanism to switch the vortex conductivity
between the conducting and insulating regimes, allow-
ing the battery to alternate between (dis)charging and
storing energy, respectively. The vortex transport param-
eters could be very sensitive and may be modulated, for
example, by heating and cooling the magnet [20, 57].
To charge the battery, we electrically bias vortex flow

along z, building up azimuthal spin winding so the magnet
accumulates exchange energy. Discharging the battery
is the reverse process wherein a vortex current induces
an electromotive force on the electric circuit, which may
be extracted as energy. The exchange energy is stored
by lowering the vortex conductivity, so vortex transport
parameters enter the insulating regime. Once in the in-
sulating regime, the amount of winding we can stabilize
is governed by the Landau criterion, since the magnetic
bulk cannot host an arbitrarily sharp texture [19, 66].
The easy-surface anisotropy (⇠K) protects the topologi-

cal spin texture by energetically preventing “phase-slip”
events during which the magnetic order parameter un-
winds [67]. Thus, easy-surface anisotropy determines the
maximal energy storage capacity, which is saturated when
winding texture energy [⇠A(D`')2] is comparable to K.

The charging and discharging e�ciencies may be used
to characterize the battery. In the vortex conducting
regime, we charge the battery relative to its ground state
by supplying a dc electric current I0 for duration ⌧ . By
tuning Rv, we can switch to the vortex insulating regime
to store the energy in the winding capacitor. The charging
e�ciency ⌘c is the ratio of the stored energy to the total
energy supplied by the electric circuit. We extract the
stored energy by connecting the battery to a load resistor
RL, then switching back to the vortex conducting regime
to discharge. The discharging e�ciency ⌘d is the ratio of
energy consumed by RL to the energy leaving the winding
capacitor.
Neglecting the self-inductance L, the e�ciencies are

⌘c =
1

2

(1� e�1)2

Zv
�1 + e�1

, ⌘d =
1� �

1 + (Zv�)�1
, (12)

written with � = RL/(RL+R) and Zv ⌘ ⇠/(1�⇠), where
⇠ = R2/RRv. Here, we define the charge-vortex figure
of merit Zv by analogy to the thermoelectric figure of
merit ZT [68–70]. Whereas for the thermoelectric e↵ect,
heat and charge currents are coupled, in this setting, we
cross-couple vortex and electric currents. Since Zv is a
monotonic function of ⇠, optimizing the system geometry
to maximize ⇠ ⇠ adw�2

F sin4 ✓ cos ✓/hr3� maximizes Zv

and, hence, the e�ciencies. Here, d is the electron mean
free path and a is the lattice spacing. Zv is improved by
decreasing r, thinning the membrane and the metal wire
by decreasing � and h, or enlarging the metal-magnet
interface by increasing w. The optimal helix angle is ✓ ⇡
63�, which balances maximizing Iv and minimizing energy
lost due to Joule heating. In the maximal e�ciency limit,
Zv ! 1, the e�ciencies simplify to ⌘c = (e� 1)2/2e and
⌘d = 1� � for (dis)charging times of t = ⌧ . Furthermore,
in the short charging time limit of t/⌧ ! 0, while still
having Zv ! 1, the charging e�ciency saturates as
⌘c ! 1.

Higher-dimensional generalization.—Topological hydro-
dynamics may be formulated using di↵erential forms for
static manifolds and is extendable to higher dimensions.
For an n-dimensional orientable manifold, the integral of
an (n� 1)-form ⇢̃w over the (n� 1)-dimensional bound-
ary of a patch of the manifold is conserved. The density
n-form ⇢̃v and the flux 1-form j̃v are derived from ⇢̃w
by invoking Stokes’ theorem. We define ⇢̃v as the exte-
rior derivative of ⇢̃w, yielding ⇢̃v = d⇢̃w. Applying the
Hodge star map [36, 58] and taking the time derivative of
both sides, ⇢̃v = d⇢̃w is recast as the continuity equation
?@t⇢̃v + ?d ? j̃v = 0, where j̃v = (�1)n ? @t⇢̃w. Returning
to the 2-dimensional membrane, Q in Eq. (5) is written

the effective dimensionless parameter, 
which is thermodynamically bounded to 
[0,1], is formally analogous to the 
thermoelectric figure of merit called ZT
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⇠ = R2/RRv

In this geometry, electric current along the spiral generically drives vorticity 
flow along the cylinder axis (thus building up uniform transverse winding)

Dao, Zou, Kleinherbers, and YT, arXiv (2023)

electron-vortex 
“cooperativity”

spin-transfer input power:
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Ẇ =

Z
dl ⌧ ·m⇥ @tm = R IIv
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FIG. 1. The ring-shaped bilayer with a radius r, width δr, and
heights hm for the magnetic insulator and hc for the metal contact.
The order parameter of this magnetic insulator with easy-xy-plane
anisotropy is parametrized by the spin-space azimuthal angle ϕ. The
(ferromagnetic) metal layer has a uniform magnetization M = M ẑ
and an azimuthal current I . The electric current induces a vortex
flow Iv in the radial direction, which builds up an azimuthal winding
density ∂lϕ of the magnetic order parameter, where l (= rφ in polar
coordinates) is the polar position in the plane of the annulus.

by Stokes theorem, is also the total winding number at the
boundary ∂%. Here n∥ is the easy-plane projection of the order
parameter n. We remark that this construction is true not only
at the low-temperature regime, where N is integer valued,
but also applicable at high temperatures and the paramagnetic
regime (even in the lattice limit [22]), where the vortex num-
ber is not quantized.

To load the free energy associated with the magnetic wind-
ing texture, we operate the magnetic system near the Curie
temperature (paramagnet regime) so that vortices and antivor-
tices deconfine to form a two-dimensional, two-component
plasma with finite vortex conductivity σv [21]. A constant
electric current I circulating in the magnetic metal contact
(see Fig. 1) energetically biases a radial vortex flow Iv [21]
based on symmetry analysis. The electric current and vortex
current are Magnus cross-coupled, as shown in Fig. 2(a). We
articulate the detailed mechanism in a later section.

Using this externally driven vortex flow, we are able to re-
verse the typical “phase-slip” process in superfluids [5,23,24]
and build up a finite order-parameter winding density ∂lϕ in
the magnetic insulator. The rate of change of the magnetic
winding number and the intensity of the vorticity flow are
related by the conservation law for the vortex 3-current (1):

dN /dt = Iv. (3)

As the winding number accumulates, the magnetic configura-
tion builds up a finite free-energy and exerts a restoring force
on the vortex flow, which decays exponentially and eventu-
ally vanishes when the restoring force balances the external
drive. This type of process is analogous to the experimental
proposal by Pearl [25], in which a magnetic screw rotating
inside a superconducting cylinder is used to propagate vortices
radially in order to increase the azimuthal superflow. In this

FIG. 2. (a) Schematic in Fig. 1 shows two viscously coupled
hydrodynamic entities: one is electron flow I and the other is vor-
tex flow Iv . The electrical circuit (b) has a current I , resistance
R, self-inductance L (due to geometry), and effective impedance
Zv (ω) arising from the vortex-flow backaction on the electric circuit.
Within the vortex circuit (c), the electric current I acts as a bias
V = γ I/hc for the vortex flow, where γ /hc parametrizes the Magnus
force between the electron and vortex degrees of freedom. Vortex
flow through the magnetic bulk experiences resistance Rv , which
is temperature dependent. The accumulated magnetic texture stores
energy according to the capacitance Cv .

system, the mechanical energy of the rotating magnetic screw
is converted into the energy associated with the increased
winding of the order parameter. Similarly, our system converts
electrical energy into the exchange energy of the magnetic
texture.

Tuning the temperature for our magnetic system well be-
low the Curie temperature Tc keeps the winding texture within
plane, due to the easy-plane anisotropy, thus endowing it
with topological protection. In this regime, the conductivity
of vortices and hence the unwinding process is exponen-
tially suppressed. As a result, the energy associated with
the magnetic texture can be stored indefinitely in the ab-
sence of an external drive. To release the energy stored in
the magnetic winding texture, we can simply raise the tem-
perature near Tc and make use of the natural vortex flow
in the “phase-slip” regime. The electromotive force from
the vortex flow becomes the output voltage of the magnetic
battery.

Main results. As we explain below, the dynamics of the
system in Figs. 1 and 2 can be understood by mapping to
two coupled circuits, one for electron flow and the other for
topological charge (vortex) flow. For the topological charge
circuit [see Fig. 2(c)], the electric current I in the metal con-
tact plays the role of a bias, which applies the vortex-motive
force γ I/hc, triggering a vortex current Iv . Here γ /hc is an
interfacial spin-transfer torque parameter to be defined below.
The magnetic insulator itself behaves like a vortex capacitor
(Cv) and resistor (Rv) in series.

For the electric circuit, a reciprocal electromotive force
EEMF = γ Iv/hc arises from the coupling between electron and
vortex dynamics [26,27], in series with the resistance R and
the geometric inductance L of the metal contact. The Onsager
reciprocity [28] between the two circuits can be expressed in
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FIG. 1. The ring-shaped bilayer with a radius r, width δr, and
heights hm for the magnetic insulator and hc for the metal contact.
The order parameter of this magnetic insulator with easy-xy-plane
anisotropy is parametrized by the spin-space azimuthal angle ϕ. The
(ferromagnetic) metal layer has a uniform magnetization M = M ẑ
and an azimuthal current I . The electric current induces a vortex
flow Iv in the radial direction, which builds up an azimuthal winding
density ∂lϕ of the magnetic order parameter, where l (= rφ in polar
coordinates) is the polar position in the plane of the annulus.

by Stokes theorem, is also the total winding number at the
boundary ∂%. Here n∥ is the easy-plane projection of the order
parameter n. We remark that this construction is true not only
at the low-temperature regime, where N is integer valued,
but also applicable at high temperatures and the paramagnetic
regime (even in the lattice limit [22]), where the vortex num-
ber is not quantized.

To load the free energy associated with the magnetic wind-
ing texture, we operate the magnetic system near the Curie
temperature (paramagnet regime) so that vortices and antivor-
tices deconfine to form a two-dimensional, two-component
plasma with finite vortex conductivity σv [21]. A constant
electric current I circulating in the magnetic metal contact
(see Fig. 1) energetically biases a radial vortex flow Iv [21]
based on symmetry analysis. The electric current and vortex
current are Magnus cross-coupled, as shown in Fig. 2(a). We
articulate the detailed mechanism in a later section.

Using this externally driven vortex flow, we are able to re-
verse the typical “phase-slip” process in superfluids [5,23,24]
and build up a finite order-parameter winding density ∂lϕ in
the magnetic insulator. The rate of change of the magnetic
winding number and the intensity of the vorticity flow are
related by the conservation law for the vortex 3-current (1):

dN /dt = Iv. (3)

As the winding number accumulates, the magnetic configura-
tion builds up a finite free-energy and exerts a restoring force
on the vortex flow, which decays exponentially and eventu-
ally vanishes when the restoring force balances the external
drive. This type of process is analogous to the experimental
proposal by Pearl [25], in which a magnetic screw rotating
inside a superconducting cylinder is used to propagate vortices
radially in order to increase the azimuthal superflow. In this

FIG. 2. (a) Schematic in Fig. 1 shows two viscously coupled
hydrodynamic entities: one is electron flow I and the other is vor-
tex flow Iv . The electrical circuit (b) has a current I , resistance
R, self-inductance L (due to geometry), and effective impedance
Zv (ω) arising from the vortex-flow backaction on the electric circuit.
Within the vortex circuit (c), the electric current I acts as a bias
V = γ I/hc for the vortex flow, where γ /hc parametrizes the Magnus
force between the electron and vortex degrees of freedom. Vortex
flow through the magnetic bulk experiences resistance Rv , which
is temperature dependent. The accumulated magnetic texture stores
energy according to the capacitance Cv .

system, the mechanical energy of the rotating magnetic screw
is converted into the energy associated with the increased
winding of the order parameter. Similarly, our system converts
electrical energy into the exchange energy of the magnetic
texture.

Tuning the temperature for our magnetic system well be-
low the Curie temperature Tc keeps the winding texture within
plane, due to the easy-plane anisotropy, thus endowing it
with topological protection. In this regime, the conductivity
of vortices and hence the unwinding process is exponen-
tially suppressed. As a result, the energy associated with
the magnetic texture can be stored indefinitely in the ab-
sence of an external drive. To release the energy stored in
the magnetic winding texture, we can simply raise the tem-
perature near Tc and make use of the natural vortex flow
in the “phase-slip” regime. The electromotive force from
the vortex flow becomes the output voltage of the magnetic
battery.

Main results. As we explain below, the dynamics of the
system in Figs. 1 and 2 can be understood by mapping to
two coupled circuits, one for electron flow and the other for
topological charge (vortex) flow. For the topological charge
circuit [see Fig. 2(c)], the electric current I in the metal con-
tact plays the role of a bias, which applies the vortex-motive
force γ I/hc, triggering a vortex current Iv . Here γ /hc is an
interfacial spin-transfer torque parameter to be defined below.
The magnetic insulator itself behaves like a vortex capacitor
(Cv) and resistor (Rv) in series.

For the electric circuit, a reciprocal electromotive force
EEMF = γ Iv/hc arises from the coupling between electron and
vortex dynamics [26,27], in series with the resistance R and
the geometric inductance L of the metal contact. The Onsager
reciprocity [28] between the two circuits can be expressed in
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• Vortex and electron fluxes cross-couple via Magnus-like friction: 

• The magnetic annulus acts as a winding capacitor: 

• It is tempting to think of devices where a tunable vortex 
conductivity (e.g., associated with their binding and/or defect 
pinning) is utilized as a switch
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II. 2D VORTICITY (HYDRO)DYNAMICS

A. Classical vorticity dynamics

A three-component real vector field m = (mx, my, mz ) re-
siding in 2 + 1 dimensions, m(r, t ), realizes an R2 → R3

mapping, at any given time t . These spatial field textures
are devoid of point defects, as the fundamental homotopy
group of the order-parameter space m is trivial: π1(R3) = 1.
Such two-dimensional textures are, furthermore, all topolog-
ically equivalent, having fixed the boundary profile of m on
a connected patch of R2, which is reflected in the fact that
π2(R3) = 1. Despite this, a smooth vector field defines a
topological hydrodynamics governed by the continuity equa-
tion ∂µ jµ = 0 (with the Einstein summation implied over the
Greek letters: µ = 0, 1, 2 → t, x, y), where [11]

jµ ≡ ϵµνξ z · ∂νm × ∂ξ m
2π

. (1)

Here, z is the z-axis unit vector and ϵµνξ is the Levi-Civita
symbol.

For the special case of a rigid texture sliding at a velocity
v, for example: j = ρv, where ρ ≡ j0 and j = ( jx, jy). For
another special case of a sharp vortex in a strongly easy-plane
magnet with the planar order parameter normalized to unity,
|m| → 1: ρ ≈ δ(r − r0), where r0 is the position at which
m tilts out of the plane (over an appropriate healing length
defining the size of the core). These examples intuitively
suggest a fluid whose density is given by the distribution of
vorticity in the system. While in the extreme easy-plane case,
a vortex core carries a quantized topological charge, we do not
generally assume this special limit.

The above conserved quantity j0 can be recast as a ficti-
tious flux

ρ = z · ∇ × A
2π

(2)

associated with the gauge field

A = mx∇my − my∇mx . (3)

Applying Green’s theorem, we then see that the conserved
topological charge within a patch (,

Q ≡
∫

(

d2r ρ =
∮

∂(

dr · A
2π

=
∮

∂(

dφ

2π
m2

∥ , (4)

is associated with the order-parameter winding around its
boundary ∂(. m∥ is the field’s projection onto the xy plane
(within the order-parameter space) and φ is the associated
azimuthal angle. This reveals the geometrical meaning of the
conservation law: The charge Q in the bulk can change only
in response to a vorticity flow through the boundary.

B. Quantum vorticity dynamics

To construct a simple quantum theory, which reproduces
the above classical hydrodynamics of vorticity in the clas-
sical limit of h̄ → 0, let us consider a square lattice model
sketched in Fig. 1. We label each vertex of the lattice by
two integer indices: ı (along the x axis) and ȷ (along the y
axis). The same indices are used to label the square plaquettes,
according to their lower left corner, as well as the vertical
links going upward and the horizontal links to the right of the

ρıȷ

x (ı)

y (ȷ)

jx
ıȷ

jy
ıȷ

jy
ıȷ̃

jx
ı̃ȷ

Sıȷ

Sı̃ȷ̃

Sı̃ȷ

Sıȷ̃

FIG. 1. The quantum spin lattice described by an arbitrary
Hamiltonian H . Sıȷ is the spin operator at site ıȷ , with index ı (ȷ )
running along the x (y) axis. ı̃ = ı + 1 and ȷ̃ = ȷ + 1. ρıȷ is the
conserved topological charge per plaquette ıȷ , jx

ıȷ ( jy
ıȷ ) is the flux

per vertical (horizontal) link ıȷ , which together satisfy the quantum
continuity equation (10).

site ıȷ . Each site contains a quantum spin S = (Sx, Sy, Sz ),
of magnitude S (in units of h̄), characterized by the standard
angular-momentum algebra [Sa, Sb] = iϵabcSc.

We associate a charge density

ρıȷ ≡
Ax

ıȷ − Ax
ıȷ̃ + Ay

ı̃ȷ − Ay
ıȷ

2πa
(5)

to each plaquette, where a is the lattice spacing. Here, ı̃ ≡
ı + 1 and ȷ̃ ≡ ȷ + 1, and

Ax
ıȷ = z · (Sı̃ȷ + Sıȷ ) × (Sı̃ȷ − Sıȷ )

4aS2
+ H.c. = z · Sıȷ × Sı̃ȷ

aS2
,

Ay
ıȷ = z · (Sıȷ̃ + Sıȷ ) × (Sıȷ̃ − Sıȷ )

4aS2
+ H.c. = z · Sıȷ × Sıȷ̃

aS2
,

(6)
which we assign formally to the corresponding horizontal and
vertical sides of the plaquette, respectively. These definitions
mimic Eqs. (2) and (3), respectively, and should reproduce
them by coarse graining the magnetic textures in the classical
limit of S → ∞.

According to these definitions,

ρıȷ = z · cıȷ

2πa2
, where cıȷ ≡ 1

S2

∑

l

Sl × Sl̃ (7)

is the vector chirality of the corresponding plaquette, with the
sum running over the four vertices labeled by l (l̃ being the
vertex next to l , in the counterclockwise direction) [12]. We
also see [according to Eq. (5)] that

Q =
∑

ıȷ

ρıȷ (8)

vanishes in the bulk and reduces to the boundary terms, which
we can interpret as the quantum version of the vorticity (4).
This suggests a conservation law with the boundary fluxes
corresponding to the vorticity flow. Indeed, according to the
Heisenberg equation of motion (for Hamiltonian H and an
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• Vorticity per plaquette is given by the (z component of the) vector 
chirality: quantum version of the winding around the plaquette 

• For smooth classical textures, this reproduces the previous 
continuum version 
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2⇡a2
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S2

X

l

Sl ⇥ Sl̃where
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A new promising materials platform: Mn3Sn(Ge)

Antiferromagnetic Weyl semimetal with 
planar (octupolar) spin texture 

free to rotate within the easy plane

Liu and Balents, PRL (2017)

Nernst measurement of a domain-wall 
motion subjected to a magnetic field

Otani and Higo, APL (2021)



Quantum annealing of the Kosterlitz-Thouless transition

T < TKT
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vortices bind with antivortices: 
vorticity insulator

(anti)vortices unbind and proliferate: 
vorticity metal (two-component plasma)

LETTER RESEARCH

corresponding set of six perturbative ground states that require four-
qubit chains to be in delocalized superpositions of their computational 
basis states |↑↑↑↑  and ∣ ⟩↓↓↓↓ . Thus the addition of quantum fluct-
uations selects an ordered subset from the highly degenerate ground-
state manifold, reducing entropy and imposing long-range correlations; 

this phenomenon is a form of ‘order by disorder’4, and naturally divides 
the spins into three sublattices categorized by their magnetization in 
the six perturbative ground states. The sublattice magnetizations m1, 
m2 and m3, defined as the average of ⟨ ⟩σi

z  over spins in the sublattice, 
give a complex order parameter26

ψ = = + + /θ π/ π/m m m me ( e e ) 3 (3)i i i
1 2

2 3
3

4 3

In the absence of open boundary effects, ψ is simply the average of 
pseudospin ψj over all plaquettes in the system. Figure 1d, e shows 
pseudospins in the triangular lattice; a full explanation is given in the 
Methods.

In the square-octagonal lattice, we use the same order parame-
ter with the three sublattices defined according to the natural map-
ping: two FM-coupled spins must be in the same sublattice, and two 
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Fig. 2 | Topological features in the transverse-field Ising model. a, In 
the fully frustrated square-octagonal lattice, the spins of a classical state 
map naturally to a complex pseudospin field ψj on the plaquettes, revealing 
topological features. A swath of an output state from the QA processor, 
cropped at the top and bottom, is shown from this perspective, with arrows 
indicating values of ψj in the complex plane. Vortices and antivortices 
(marked in white) can be identified by the clockwise or anticlockwise 
winding of ψj along a closed clockwise path. These topological defects 
occur in the presence of all-up or all-down plaquettes and frustrated 
FM couplers. Unpaired vortices and antivortices can appear, owing 
to the open boundary. b, The phase diagram of the square-octagonal 
lattice in the temperature/transverse-field (T/Γ) plane is determined by 
QMC simulation on toroidal systems (see Methods). Below a disordered 
paramagnetic (PM) phase, an ordered region and a critical KT region 
with Γ > 0 are bounded by KT phase transitions; circles indicate one 
of two methods of determining the upper KT transition. The quantum 
processor follows an annealing schedule that passes through the KT 
region at sufficiently low temperature of about T < 9 mK. Experiments are 
performed between 8.4 mK and 21.4 mK.

Fig. 1 | Geometrically frustrated lattices. a, b, We study the fully 
frustrated square-octagonal (a) and triangular (b) lattices with cylindrical 
boundary condition and width L up to 15 (L = 6 shown). FM couplers 
(Jij = −1.8) are indicated with blue lines in a; AFM couplers (Jij = 1 except 
on the boundary, where Jij = 1/2) are indicated with red lines in a and b.  
c, Owing to the combination of frustration and superposition, the AFM 
triangle has six classical ground states and under a small transverse 
field has six perturbative ground states. These states map to complex 
pseudospins as shown, indicated with black and white circles, respectively 
(real and imaginary axes are indicated by ‘Re’ and ‘Im’, respectively). Spin 
states of up, down and transverse-field-aligned superposition are denoted 
by ↑, ↓ and →, respectively, in c and by red, blue and white circles in d and e.  
d, e, Each plaquette in the triangular lattice has a pseudospin (indicated 
by arrows) defined by the spins of the plaquette. In a perturbative ground 
state (d), all spins in a given sublattice (indicated by numbers) take the 
same state, and consequently all pseudospins have the same orientation. 
The state shown in e has a shift in pseudospin orientation, which 
corresponds to an excitation: the two yellow triangles are in a classical 
ground state but have no energetic contribution from qubits aligning with 
the transverse field. The pseudospins seen in d and e are indicated in c.
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Observation of topological phenomena in a 
programmable lattice of 1,800 qubits
Andrew D. King1*, Juan Carrasquilla2, Jack Raymond1, Isil Ozfidan1, Evgeny Andriyash1, Andrew Berkley1, Mauricio Reis1,  
Trevor Lanting1, Richard Harris1, Fabio Altomare1, Kelly Boothby1, Paul I. Bunyk1, Colin Enderud1, Alexandre Fréchette1,  
Emile Hoskinson1, Nicolas Ladizinsky1, Travis Oh1, Gabriel Poulin-Lamarre1, Christopher Rich1, Yuki Sato1,  
Anatoly Yu. Smirnov1, Loren J. Swenson1, Mark H. Volkmann1, Jed Whittaker1, Jason Yao1, Eric Ladizinsky1, Mark W. Johnson1, 
Jeremy Hilton1 & Mohammad H. Amin1,3

The work of Berezinskii, Kosterlitz and Thouless in the 1970s1,2 
revealed exotic phases of matter governed by the topological 
properties of low-dimensional materials such as thin films of 
superfluids and superconductors. A hallmark of this phenomenon 
is the appearance and interaction of vortices and antivortices in an 
angular degree of freedom—typified by the classical XY model—
owing to thermal fluctuations. In the two-dimensional Ising model 
this angular degree of freedom is absent in the classical case, but with 
the addition of a transverse field it can emerge from the interplay 
between frustration and quantum fluctuations. Consequently, 
a Kosterlitz–Thouless phase transition has been predicted in the 
quantum system—the two-dimensional transverse-field Ising 
model—by theory and simulation3–5. Here we demonstrate a large-
scale quantum simulation of this phenomenon in a network of 
1,800 in situ programmable superconducting niobium flux qubits 
whose pairwise couplings are arranged in a fully frustrated square-
octagonal lattice. Essential to the critical behaviour, we observe the 
emergence of a complex order parameter with continuous rotational 
symmetry, and the onset of quasi-long-range order as the system 
approaches a critical temperature. We describe and use a simple 
approach to statistical estimation with an annealing-based quantum 
processor that performs Monte Carlo sampling in a chain of reverse 
quantum annealing protocols. Observations are consistent with 
classical simulations across a range of Hamiltonian parameters. 
We anticipate that our approach of using a quantum processor as 
a programmable magnetic lattice will find widespread use in the 
simulation and development of exotic materials.

Richard Feynman’s vision of simulating quantum systems with a quan-
tum computer6,7 has motivated the field of quantum information since its 
inception. In the absence of large-scale programmable universal quan-
tum computers, advances in quantum simulation are bound by availa-
ble technology. Nevertheless, remarkable progress has been made using 
near-term approaches such as ultracold atoms8, superconducting qubits9, 
Bose–Einstein condensates10, trapped ions11 and quantum dots12, among 
others13. Owing to the possibility of noise-tolerant applications, quan-
tum simulation has been identified as an area of potential commercial 
value for near-term quantum computing technologies14,15. Quantum 
annealing (QA) processors16–18 can be used to simulate systems in the 
transverse-field Ising model (TFIM) described by the Hamiltonian

∑ ∑ ∑σ σ σ Γ σ= + −
<

H h J (1)
i

i i
z

i j
ij i

z
j
z

i
i
x

where hi are longitudinal fields, Jij are coupling terms, σi
x and σi

z  are 
Pauli matrices acting on the ith spin, and Γ is the transverse field. 
Evolution of this Hamiltonian in a low-temperature environment 
allows sampling of low-energy solutions, with applications to optimi-
zation and machine learning14,19,20. This in turn allows estimation of 

equilibrium statistics of various phases dictated by the parameters hi, 
Jij and Γ at a given temperature T.

Geometrically frustrated magnets21 are systems described by spin 
Hamiltonians with competing terms that cannot be minimized simul-
taneously. These systems give rise to a broad spectrum of exotic phases 
of matter. The TFIM exhibits a particular type of topological phenom-
enon on certain frustrated lattices: a Kosterlitz–Thouless (KT) phase 
transition separates a disordered paramagnetic phase from a phase in 
which complementary topological defects—vortices and antivortices—
form bound pairs, resulting in polynomial decay of correlations1,2,4. 
This phase transition has been predicted in theory and simulation, but 
to our knowledge never observed experimentally in the TFIM. Other 
KT phase transitions have, however, been observed in many systems 
including superconducting and superfluid films22, trapped atomic 
gases10 and hybrid tin–graphene Josephson junction arrays23.

Here we exhibit this phenomenon in a large-scale programmable 
quantum simulation. We perform this simulation using a superconduct-
ing QA processor consisting of 2,048 radio-frequency superconducting 
quantum interference device (SQUID) flux qubits fabricated as an inte-
grated circuit, in which the Hamiltonian terms hi and Jij are specified 
with programmable on-chip control circuitry16–18. The topology of the 
available non-zero coupling terms Jij consists of a regular bipartite grid. 
On this programmable substrate we define a sequence of fully frus-
trated square-octagonal lattices having a cylindrical boundary condi-
tion (Fig. 1a), with the largest system using 1,800 qubits (see Methods). 
This lattice features chains of four ferromagnetically coupled qubits. In 
the large ferromagnetic (FM) coupling limit, the low-energy description 
of this lattice follows the same Landau–Ginzburg–Wilson theory as 
the widely studied3–5,24–26 triangular antiferromagnetic (AFM) lattice 
(Fig. 1b). We therefore use the same analytic machinery, which is valu-
able even outside the large FM coupling, low-temperature limit.

Central to this analysis is a mapping from each plaquette in the tri-
angular lattice to a two-dimensional pseudospin that can be represented 
by a complex number ψj. This gives the local angular degree of freedom 
in which topological features, including vortices and antivortices, can 
emerge. To first-order perturbation in the small-Γ limit, an AFM tri-
angle has six degenerate ground states, each consisting of an up-spin 
(|↑ ), a down-spin (|↓ ), and a spin aligned with the transverse field 
(| → = |↑ + |↓ /( ) 2). These six ground states map to complex six-
state XY pseudospins (Fig. 1c) via the mapping
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As with a single AFM triangle, the triangular lattice has, to first-order 
perturbation, a six-fold-degenerate ground state. One-third of the spins 
align with the transverse field, one-third take spin-up and one-third 
take spin-down (Fig.  1d). The square-octagonal lattice has a 
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scale quantum simulation of this phenomenon in a network of 
1,800 in situ programmable superconducting niobium flux qubits 
whose pairwise couplings are arranged in a fully frustrated square-
octagonal lattice. Essential to the critical behaviour, we observe the 
emergence of a complex order parameter with continuous rotational 
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inception. In the absence of large-scale programmable universal quan-
tum computers, advances in quantum simulation are bound by availa-
ble technology. Nevertheless, remarkable progress has been made using 
near-term approaches such as ultracold atoms8, superconducting qubits9, 
Bose–Einstein condensates10, trapped ions11 and quantum dots12, among 
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z  are 
Pauli matrices acting on the ith spin, and Γ is the transverse field. 
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quantum simulation. We perform this simulation using a superconduct-
ing QA processor consisting of 2,048 radio-frequency superconducting 
quantum interference device (SQUID) flux qubits fabricated as an inte-
grated circuit, in which the Hamiltonian terms hi and Jij are specified 
with programmable on-chip control circuitry16–18. The topology of the 
available non-zero coupling terms Jij consists of a regular bipartite grid. 
On this programmable substrate we define a sequence of fully frus-
trated square-octagonal lattices having a cylindrical boundary condi-
tion (Fig. 1a), with the largest system using 1,800 qubits (see Methods). 
This lattice features chains of four ferromagnetically coupled qubits. In 
the large ferromagnetic (FM) coupling limit, the low-energy description 
of this lattice follows the same Landau–Ginzburg–Wilson theory as 
the widely studied3–5,24–26 triangular antiferromagnetic (AFM) lattice 
(Fig. 1b). We therefore use the same analytic machinery, which is valu-
able even outside the large FM coupling, low-temperature limit.

Central to this analysis is a mapping from each plaquette in the tri-
angular lattice to a two-dimensional pseudospin that can be represented 
by a complex number ψj. This gives the local angular degree of freedom 
in which topological features, including vortices and antivortices, can 
emerge. To first-order perturbation in the small-Γ limit, an AFM tri-
angle has six degenerate ground states, each consisting of an up-spin 
(|↑ ), a down-spin (|↓ ), and a spin aligned with the transverse field 
(| → = |↑ + |↓ /( ) 2). These six ground states map to complex six-
state XY pseudospins (Fig. 1c) via the mapping
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As with a single AFM triangle, the triangular lattice has, to first-order 
perturbation, a six-fold-degenerate ground state. One-third of the spins 
align with the transverse field, one-third take spin-up and one-third 
take spin-down (Fig.  1d). The square-octagonal lattice has a 
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where the Ising exchange is set to one and the double sum runs over the nearest-neighbor sites,
� ⇠ 1 resolves the antiferromagnetic frustration by favoring one of the three sublattices to orient
in the x direction. A good low-energy ansatz is given by a (Néel-like) factorizeable state with the
lattice 1 sites being all in the superposition state |!i = (|"i + |#i)/

p
2 (supposing � > 0, to be

specific), the 2 sites being all |"i, and the 3 sites being all |#i. This state breaks some of the
rotational and translational symmetries of the Hamiltonian (17), which result in 6 such degenerate
configurations, distinguished by the expectation values of the order parameter (16):  ! e
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with ' = ±⇡/6,±⇡/2,±5⇡/6. The associated basic excitations, corresponding to ⇡/3-tilt domain
walls (as sketched in the figures above and below) and their vortex-like junctions (see figure below),
are thus reminiscent of the 6-state Potts (clock) model, which is known [6] to exhibit Kosterlitz-
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The winding density along each quasi-1D sequence of plaquettes is defined according to Eq. (1),
winding flow (in the x direction)—Eq. (4), and the parasitic transverse vorticity flow (in the y

direction)—Eq. (6). These definitions, along with the 2D Hamiltonian (17) provide the starting
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corresponding set of six perturbative ground states that require four-
qubit chains to be in delocalized superpositions of their computational 
basis states |↑↑↑↑  and ∣ ⟩↓↓↓↓ . Thus the addition of quantum fluct-
uations selects an ordered subset from the highly degenerate ground-
state manifold, reducing entropy and imposing long-range correlations; 

this phenomenon is a form of ‘order by disorder’4, and naturally divides 
the spins into three sublattices categorized by their magnetization in 
the six perturbative ground states. The sublattice magnetizations m1, 
m2 and m3, defined as the average of ⟨ ⟩σi

z  over spins in the sublattice, 
give a complex order parameter26

ψ = = + + /θ π/ π/m m m me ( e e ) 3 (3)i i i
1 2

2 3
3

4 3

In the absence of open boundary effects, ψ is simply the average of 
pseudospin ψj over all plaquettes in the system. Figure 1d, e shows 
pseudospins in the triangular lattice; a full explanation is given in the 
Methods.

In the square-octagonal lattice, we use the same order parame-
ter with the three sublattices defined according to the natural map-
ping: two FM-coupled spins must be in the same sublattice, and two 
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Fig. 2 | Topological features in the transverse-field Ising model. a, In 
the fully frustrated square-octagonal lattice, the spins of a classical state 
map naturally to a complex pseudospin field ψj on the plaquettes, revealing 
topological features. A swath of an output state from the QA processor, 
cropped at the top and bottom, is shown from this perspective, with arrows 
indicating values of ψj in the complex plane. Vortices and antivortices 
(marked in white) can be identified by the clockwise or anticlockwise 
winding of ψj along a closed clockwise path. These topological defects 
occur in the presence of all-up or all-down plaquettes and frustrated 
FM couplers. Unpaired vortices and antivortices can appear, owing 
to the open boundary. b, The phase diagram of the square-octagonal 
lattice in the temperature/transverse-field (T/Γ) plane is determined by 
QMC simulation on toroidal systems (see Methods). Below a disordered 
paramagnetic (PM) phase, an ordered region and a critical KT region 
with Γ > 0 are bounded by KT phase transitions; circles indicate one 
of two methods of determining the upper KT transition. The quantum 
processor follows an annealing schedule that passes through the KT 
region at sufficiently low temperature of about T < 9 mK. Experiments are 
performed between 8.4 mK and 21.4 mK.

Fig. 1 | Geometrically frustrated lattices. a, b, We study the fully 
frustrated square-octagonal (a) and triangular (b) lattices with cylindrical 
boundary condition and width L up to 15 (L = 6 shown). FM couplers 
(Jij = −1.8) are indicated with blue lines in a; AFM couplers (Jij = 1 except 
on the boundary, where Jij = 1/2) are indicated with red lines in a and b.  
c, Owing to the combination of frustration and superposition, the AFM 
triangle has six classical ground states and under a small transverse 
field has six perturbative ground states. These states map to complex 
pseudospins as shown, indicated with black and white circles, respectively 
(real and imaginary axes are indicated by ‘Re’ and ‘Im’, respectively). Spin 
states of up, down and transverse-field-aligned superposition are denoted 
by ↑, ↓ and →, respectively, in c and by red, blue and white circles in d and e.  
d, e, Each plaquette in the triangular lattice has a pseudospin (indicated 
by arrows) defined by the spins of the plaquette. In a perturbative ground 
state (d), all spins in a given sublattice (indicated by numbers) take the 
same state, and consequently all pseudospins have the same orientation. 
The state shown in e has a shift in pseudospin orientation, which 
corresponds to an excitation: the two yellow triangles are in a classical 
ground state but have no energetic contribution from qubits aligning with 
the transverse field. The pseudospins seen in d and e are indicated in c.
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corresponding set of six perturbative ground states that require four-
qubit chains to be in delocalized superpositions of their computational 
basis states |↑↑↑↑  and ∣ ⟩↓↓↓↓ . Thus the addition of quantum fluct-
uations selects an ordered subset from the highly degenerate ground-
state manifold, reducing entropy and imposing long-range correlations; 

this phenomenon is a form of ‘order by disorder’4, and naturally divides 
the spins into three sublattices categorized by their magnetization in 
the six perturbative ground states. The sublattice magnetizations m1, 
m2 and m3, defined as the average of ⟨ ⟩σi

z  over spins in the sublattice, 
give a complex order parameter26
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In the absence of open boundary effects, ψ is simply the average of 
pseudospin ψj over all plaquettes in the system. Figure 1d, e shows 
pseudospins in the triangular lattice; a full explanation is given in the 
Methods.

In the square-octagonal lattice, we use the same order parame-
ter with the three sublattices defined according to the natural map-
ping: two FM-coupled spins must be in the same sublattice, and two 
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the fully frustrated square-octagonal lattice, the spins of a classical state 
map naturally to a complex pseudospin field ψj on the plaquettes, revealing 
topological features. A swath of an output state from the QA processor, 
cropped at the top and bottom, is shown from this perspective, with arrows 
indicating values of ψj in the complex plane. Vortices and antivortices 
(marked in white) can be identified by the clockwise or anticlockwise 
winding of ψj along a closed clockwise path. These topological defects 
occur in the presence of all-up or all-down plaquettes and frustrated 
FM couplers. Unpaired vortices and antivortices can appear, owing 
to the open boundary. b, The phase diagram of the square-octagonal 
lattice in the temperature/transverse-field (T/Γ) plane is determined by 
QMC simulation on toroidal systems (see Methods). Below a disordered 
paramagnetic (PM) phase, an ordered region and a critical KT region 
with Γ > 0 are bounded by KT phase transitions; circles indicate one 
of two methods of determining the upper KT transition. The quantum 
processor follows an annealing schedule that passes through the KT 
region at sufficiently low temperature of about T < 9 mK. Experiments are 
performed between 8.4 mK and 21.4 mK.
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frustrated square-octagonal (a) and triangular (b) lattices with cylindrical 
boundary condition and width L up to 15 (L = 6 shown). FM couplers 
(Jij = −1.8) are indicated with blue lines in a; AFM couplers (Jij = 1 except 
on the boundary, where Jij = 1/2) are indicated with red lines in a and b.  
c, Owing to the combination of frustration and superposition, the AFM 
triangle has six classical ground states and under a small transverse 
field has six perturbative ground states. These states map to complex 
pseudospins as shown, indicated with black and white circles, respectively 
(real and imaginary axes are indicated by ‘Re’ and ‘Im’, respectively). Spin 
states of up, down and transverse-field-aligned superposition are denoted 
by ↑, ↓ and →, respectively, in c and by red, blue and white circles in d and e.  
d, e, Each plaquette in the triangular lattice has a pseudospin (indicated 
by arrows) defined by the spins of the plaquette. In a perturbative ground 
state (d), all spins in a given sublattice (indicated by numbers) take the 
same state, and consequently all pseudospins have the same orientation. 
The state shown in e has a shift in pseudospin orientation, which 
corresponds to an excitation: the two yellow triangles are in a classical 
ground state but have no energetic contribution from qubits aligning with 
the transverse field. The pseudospins seen in d and e are indicated in c.
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A3 = A3f̂3

FIG. 1: A tetrahedron severing as the elementary building block of an arbitrary lattice. Si is the spin operator at site i. A
skyrmion number and a hedgehog flux (2) can be defined for every facet A = Af̂ with area A and normal vector f̂ . A hedgehog
density (6) can be defined for every tetrahedron, where we choose the normal directions of all facets to be pointing outwards.

By discretizing ⇢ = r · B in terms of the skyrmion densities (i.e., emergent B field) on the four facets, we can
associate a hedgehog density

⇢ =

P4
i=1 BAi Ai

V
=

c123 + c142 + c243 + c134

8⇡V
, (6)

to the tetrahedron in Fig. 1, where V is its volume. Note definition (6) is proportional to the total skyrmion number
on all four facets (where we have chosen outwards normal vector as positive direction for defining the orientation).
From this, we immediately conclude that the Stokes’s theorem also holds at lattice level,

X

all cubes

⇢V = boundary skyrmions, (7)

where all the inner facets cancel out and only boundary terms are left. Accordingly, for a fixed texture on the
boundary, an arbitrary smooth field in the bulk yields the same net hedgehog number, irrespective of the details of
the dynamics.

With these definitions of ⇢ and jA, we can verify the hedgehog density and flux satisfy the continuity equation:

@t(⇢V ) +
4X

i=i

jAi Ai = 0. (8)

One notes that there are two di↵erent contributions to the hedgehog flux (2). The first term, �@tBA, is due to the
change of the skyrmion density on the triangular facet. The second term, �ijk/A, while is inconsequential for the
conservation law, is important to ensure that jA is a local physical current, which is consequential for energetic and
Kubo considerations (when one attempts to establish chemical-potential bias of hedgehog and derive its conductivity
in linear response).1

We emphasize that the conservation law for hedgehogs holds at quantum level (also in the classical limit), irrespective
of the form of the Hamiltonian, which indicates that it is topological and is not rooted in any specific symmetry of
the system. After coarse-graining process, we obtain n field out of S and hedgehog current j

µ in terms of n. It is the
conservation of hedgehog current at lattice level that determines the conservation of j

µ at arbitrary temperatures.

defects characterized by the aforementioned quantized
charges, since the homotopy group π2ðR3Þ is trivial [36].
Nevertheless, the smooth field nðr⃗; tÞ exhibits a topological
hydrodynamics governed by the topological conservation
law ∂μjμ ¼ 0 (with the Einstein summation implied over the
Greek indices: μ ¼ 0; 1; 2; 3 ↔ t; x; y; z), where

jμ ¼ ϵμναβ∂νn · ð∂αn × ∂βnÞ=8π: ð1Þ

Here, ϵμναβ is the Levi-Civita symbol with convention
ϵ0123 ¼ 1. The conserved (topological) charge within a
bulk Ω is

Q≡
Z

Ω
dxdydzj0 ¼ 1

8π

Z

∂Ω
dxj ∧ dxkn · ð∂jn × ∂knÞ;

ð2Þ

which equals the skyrmion number at boundary ∂Ω,
according to the generalized Stokes’ theorem [36]. We
recognize that charge Q is precisely the hedgehog number
(thus jμ is the hedgehog current) in the ordered phase, with
the last equality in Eq. (2) defining the degree of the S2 → S2

mapping on the boundary. Our simple example n0 yields
j0 → δðr⃗Þ and thus Q ¼ 1. Here, we remark that the core
should be regularized. There is no true singularity in our
treatment. In the paramagnetic phase, Q is no longer

quantized due to fluctuations in the magnitude of n.
Regardless, the hedgehog current, Eq. (1), is conserved
[37], which sets the stage for the topological hydrodynamics
of hedgehogs at an arbitrary temperature. The conservation
law also holds in the lattice limit, with proper discretized
definitions [37]. Hereafter, we refer to jμ ¼ ðj0; jÞ as
hedgehog density (and flux), irrespective of the temperature.
We stress that, in contrast to two-dimensional skyrmions

[18–20] or three-dimensional Shankar skyrmions [29],
which can be created and annihilated locally, the conser-
vation law of hedgehogs is immune to local fluctuations
and therefore applicable also in the paramagnetic phase
[37]. This robustness of hedgehog flow underpins the
hedgehog hydrodynamics.
Equation (2) establishes a bulk-edge correspondence,

indicating that the total hedgehog number in a bulk interior
can fluctuate only by flowing in and out through its
boundary. This, in turn, is associated with a corresponding
change in the skyrmion number on the boundary, acting as
a fingerprint of the hedgehog flow. A close analog in lower
dimensions has been thoroughly studied in the context of
superfluid phase slips, where the winding number asso-
ciated with one-dimensional XY textures can be changed
by a transverse passage of planar vortices. The 3D bulk-
edge correspondence Eq. (2) manifests when a skyrmion
density unwinds or reversely builds up as a thread of a
hedgehog current passes through, which has been verified
experimentally [41].
Topological Maxwell equations.—We provide, in this

section, another formulation of the conservation law as
topological Maxwell equations, making connections to the
well-known emergent electromagnetic fields associated
with generic spin textures [42–48]. The divergence-free
condition ∂μjμ ¼ 0 can be automatically satisfied by
defining the current jμ as a curl of a rank-2 antisymmetric
Maxwell field-strength tensor

F αβ ≡ n · ð∂αn × ∂βnÞ=4π; ð3Þ

whose components are the familiar electromagnetic fields:

Ei ¼ n · ð∂tn × ∂inÞ=4π; ϵijkBk ¼ n · ð∂in × ∂jnÞ=4π:
ð4Þ

The hedgehog current Eq. (1) can therefore be recast into
the form of the Maxwell equations:

ϵμναβ∂νF αβ=2 ¼ jμ; ∂μF μν ¼ jνe: ð5Þ

The second equation defines the electric four-current,
which is also conserved: ∂μj

μ
e ¼ 0, following from the

antisymmetric property of F .
Note that fictitious electric and magnetic charges (as

sources for E⃗ and B) have the same symmetries as the real

FIG. 1. A schematic for nonlocal transport measurement of
hedgehog currents in a three-dimensional insulating magnet. Two
metallic contacts are bridged by a magnetic insulator with hedge-
hog excitations. In the paramagnetic phase, hedgehogs are free to
diffuse, where black and white ripples stand, respectively, for
delocalized hedgehog and antihedgehog densities. An applied
electric current I along y within the left metal transfers spin flow
into the magnetic texture, which biases a hedgehog flow along x.
Reciprocally, the hedgehog flow reaching the right terminal builds
up a detectable electric voltage V. The nonlocal drag resistivity,
ϱ ∝ V=I, quantifies the efficiency of the topological hedgehog
transport as well as their interfacial exchange coupling with
conducting electrons. We also show a familiar example of a
hedgehog n0 ¼ fx; y; zg=r.
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cijk =
Si · Sj ⇥ Sk

S3
where

• The continuum hedgehog hydrodynamics 

has a natural quantum underpinning on an arbitrary lattice, in terms of 
scalar spin chirality:

Zou, Zhang, and YT, PRL (2020)



Engineering and imaging hedgehog metamaterials

Creation and observation of topological magnetic monopoles and their interactions in a ferromagnetic metalattice
Soft X-ray imaging by Miao’s group at UCLA [Rana et al., Nature Nano. (2023)]



Electrical injection (detection) of topological charge
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• A nonequilibrium flow of Q must 
be consistent with crystalline and 
structural symmetries, Onsager 
reciprocity, and (1st/2nd) laws of 
thermodynamics 

• In principle, we generally expect 
such injection to happen for a 
generic drive (electrical/
microwave/optical etc.), as long 
as it is not disallowed by 
symmetries

Pierre Curie: Asymmetry creates the phenomenon
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Electrical injection (detection) of vorticity

⌧ = ⌘M ·m(J ·r)m
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Ji Zou,1 Se Kwon Kim,1, 2 and Yaroslav Tserkovnyak1

1Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
2Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

(Dated: October 25, 2018)

We study a robust topological transport carried by vortices in a thin film of an easy-plane fer-
romagnetic insulator between two metal contacts. A vortex, which is a nonlocal topological spin
texture in two-dimensional magnets, exhibits some beneficial features as compared to skyrmions,
which are local topological defects. In particular, the total topological charge carried by vorticity
is robust against local fluctuations of the spin order-parameter magnitude. We show that an elec-
tric current in one of the magnetized metal contacts can pump vortices into the insulating bulk.
Di↵usion and nonlocal Coulomb-like interaction between these vortices will establish a steady-state
vortex flow. Vortices leaving the bulk produce an electromotive force at another contact, which is
related to the current-induced vorticity pumping by the Onsager reciprocity. The voltage signal de-
cays algebraically with the separation between two contacts, similarly to a superfluid spin transport.
Finally, the vorticity and closely related skyrmion type topological hydrodynamics are generalized
to arbitrary dimensions, in terms of nonsingular order-parameter vector fields.

Introduction.—Topology and geometry play an impor-
tant role in modern condensed matter physics [1]. Topo-
logical excitations, which are nonlinear order-parameter
textures are interesting physical objects both theoreti-
cally and experimentally [2]. Dynamics of these excita-
tions can result in conservation laws that do not result
from any symmetries of the system, but rather, derive
directly from their topology, rooted in the homotopic
properties of the associated fields. A magnetic insula-
tor is a rich platform to study various classes of topo-
logical excitations and their (hydro)dynamics. On the
practical flip side, we can exploit these topological ex-
citations to deliver information through charge insula-
tors more e↵ectively than using decaying quasiparticles,
such as phonons or magnons [3]. Chiral domain walls
in quasi-one-dimensional easy-plane (anti)ferromagnets
[4, 5], skyrmions in quasi-two-dimensional magnets [6],
and the winding of three-dimensional spin-glass textures
[7] have already been investigated extensively, in this con-
text.

Easy-plane magnets support topological excitations re-
ferred to as vortices. They are characterized by the
U(1) winding number, similar to superconducting vor-
tices, and thus are nonlocal, being immune to arbi-
trary local perturbations (or “surgeries,” in the jargon
of topologists). This makes them more robust for long-
ranged transport than the previously considered topo-
logical defects. In addition, their nonlocal nature en-
genders the Coulomb-like interaction, giving rise to a
finite-temperature Kosterlitz-Thouless transition. Also,
vortices are promising candidates for information and en-
ergy storage [8]. In this paper, we will develop the hy-
drodynamic picture of vortices and realize a superfluid-
like transport [4, 9–11], based on nonsingular textures in
easy-plane magnetic materials.

Main results and discussion.—To illustrate our key
findings, we focus on the two-terminal geometry of Fig. 1.

FIG. 1. A schematic for the proposed injection and detec-
tion of vortices. The electric current in the left magnetized
contact pumps vortices into the insulating bulk. The applied
voltage is Vin. The vortices leaving the system through the
right magnetized contact sustain the output voltage Vout. The
drag coe�cient Cd ⌘ Vout/Vin quantifies the e�ciency of the
topological vorticity transport.

An electric current in the left magnetic metal contact
with magnetization M exerts an adiabatic torque on the
spins of the film at the left boundary. For an appropriate
choice of M (polarized out of the plane), the work done
by the torque will energetically bias the vortex injection
into the bulk. By regarding these vortices as classical
objects, di↵usion and nonlocal Coulomb interactions [12]
will establish a steady-state distribution of vortex density
and its flow. This pumped vorticity will leave the sys-
tem and induce an electromotive force [13] at the right
contact, according to the Onsager-reciprocal process [14].
Using the drag coe�cient Cd ⌘ Vout/Vin to measure the
e�ciency of this topological transport, we find

Cd = (⇡⌘M)2�c�A/L , (1)

in the linear-response regime, when L ! 1 (so the
magnetic-insulator bulk dominates the impedance for the
vorticity flow). �c and � here are the conductivity of
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spin torque by the input 
current at the left interface:

M / z
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- magnetization of the metal contact

- magnetic texture of the insulator
Onsager-reciprocal 

motive force

charge current vortex flux

Ẇ =

Z
dy ⌧ · (m⇥ @tm) ! ⌘ z · J⇥ j
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Topological spin-transfer drag driven by skyrmion diffusion
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We study the spin-transfer drag mediated by the Brownian motion of skyrmions. The essential idea is illustrated
in a two-terminal geometry, in which a thin film of a magnetic insulator is placed in between two metallic
reservoirs. An electric current in one of the terminals pumps topological charge into the magnet via a spin-transfer
torque. The charge diffuses over the bulk of the system as stable skyrmion textures. By Onsager’s reciprocity,
the topological charge leaving the magnet produces an electromotive force in the second terminal. The voltage
signal decays algebraically with the separation between contacts, in contrast to the exponential suppression of the
spin drag driven by nonprotected excitations like magnons. We show how this topological effect can be used as
a tool to characterize the phase diagram of chiral magnets and thin films with interfacial Dzyaloshinskii-Moriya
interactions.

DOI: 10.1103/PhysRevB.94.024431

I. INTRODUCTION

Magnetic insulators stand out as promising platforms for
spintronics devices due to the lack of energy dissipation by
Joule heating. Nevertheless, the transmission of information
encoded in the collective dynamics of localized spins is not
immune to losses due to the exchange of angular momentum
with itinerant electrons and the lattice. In condensed matter
systems, dissipationless transport is either sustained by a
superfluid ground state or driven by topological excitations.
Spin superfluidity has been extensively discussed in the
context of easy-plane magnetic insulators [1]. Long-ranged
spin transmission is supported by the coherent precession of
the order parameter within the easy plane of the magnet, which,
on the other hand, is not robust under perturbations breaking
the U(1) spin symmetry. Dissipationless spin transport can be
mediated also by the Brownian motion of solitons like, for
example, domain walls [2]. In that case, however, thermally
activated phase slip events [3] invalidate the topological
protection of domain walls’ chirality, imposing restrictions
on the geometry of the device. The aim of this paper is to
generalize the idea of spin transport mediated by solitons,
focusing on skyrmion textures in order to overcome these
limitations.

Magnetic skyrmions are characterized by a topological
index that labels the number of times that the local order
parameter wraps the unit sphere in spin space. This integer—
the skyrmion charge—remains unchanged as long as the
texture varies slowly. Due to its robustness, skyrmions are
promising candidates as building blocks for information
storage [4]. The observation of skyrmions in bulk [5,6] and
thin films [7,8] of chiral magnets, or in systems with interfacial
Dzyaloshinskii-Moriya interaction [9], together with the low
spin-polarized currents that are needed to move them [10] has
boosted the field in recent years.

Let us consider the two-terminal geometry depicted in
Fig. 1. A current in the left contact exerts a torque on the
order parameter of the film, favoring the injection of skyrmion
charge. The charge is topologically protected, so it diffuses
without losses over the bulk of the system as stable skyrmion
solitons, which eventually reach the right terminal. By the
reciprocal effect to the spin-transfer torque, the topological

charge leaving the system pumps itinerant spins into the right
metal, generating an electromotive force. The drag of spin
current is negative, contrary to frictional effects based on
linear momentum transfer. In the steady state and neglecting
boundary effects, the drag coefficient Cd ≡ IR/IL reduces to

Cd = −µρ0σ

(
2π!P

e

)2
d

L
. (1)

Here ρ0 is the concentration of skyrmions at the equilibrium, µ
is the longitudinal skyrmion mobility, and σ is the conductivity
of the metal contacts. The term between brackets must be
interpreted as the conversion factor between charge and spin
current, where P is a dimensionless parameter measuring the
efficiency of this conversion. The last factor is geometrical, d
and L being the thickness of the film and the distance between
terminals, respectively. Its origin is the following: On one
hand, the spin transfer and pumping effects are more efficient
as the surface of the interface grows; on the other, the drag
effect decays algebraically with the distance between contacts
due to the diffusion of the skyrmion charge. The latter is a
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FIG. 1. Scheme for electrical injection and detection of
skyrmions. The electric current in the left terminal pumps skyrmion
charge into the magnet, which diffuses as stable solitons over the
system. The skyrmion charge leaving the system sustains a voltage
signal in the second terminal.
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The 3D hedgehog flow with skyrmionic 
bulk/boundary correspondence is 
closely analogous to the 2D vorticity 
flow with winding bulk/boundary 
correspondence

Extending to 3D bulk: Hedgehog flow

 

Topological Transport of Deconfined Hedgehogs in Magnets

Ji Zou , Shu Zhang,* and Yaroslav Tserkovnyak
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We theoretically investigate the dynamics of magnetic hedgehogs, which are three-dimensional
topological spin textures that exist in common magnets, focusing on their transport properties and
connections to spintronics. We show that fictitious magnetic monopoles carried by hedgehog textures obey
a topological conservation law, based on which a hydrodynamic theory is developed. We propose a
nonlocal transport measurement in the disordered phase, where the conservation of the hedgehog flow
results in a nonlocal signal decaying inversely proportional to the distance. The bulk-edge correspondence
between the hedgehog number and skyrmion number, the fictitious electric charges arising from magnetic
dynamics, and the analogy between bound states of hedgehogs in ordered phase and the quark confinement
in quantum chromodynamics are also discussed. Our study points to a practical potential in utilizing
hedgehog flows for long-range neutral signal propagation or manipulation of skyrmion textures in three-
dimensional magnetic materials.

DOI: 10.1103/PhysRevLett.125.267201

Introduction.—A main theme of spintronics is the
utilization of spin degrees of freedom for information
transmission and processing [1,2], either using spin-
polarized electric currents, or relying on spins alone to
free the transport from Joule heating. Magnons, the quanta
of spin waves, have been proposed to be promising data
carriers in new computing technologies [3–7]. A detectable
diffusive spin transport can be achieved via magnons in
ordered magnetic insulators [8] or even spin-conserving
fluctuations in paramagnets [9]. However, such spin cur-
rents typically decay exponentially, once the propagation
distance exceeds the spin-relaxation length [2]. In alter-
native transport regimes, where signals are expected to
decay algebraically, topology plays a crucial role [10–12].
Topological spin textures, such as chiral domain walls [13],
vortices [14–17], skyrmions [18–20], hopfions [21,22],
and hedgehogs [23–26] are defined homotopically and are
topologically protected [10–12]. Consequently, they are
promising to sustain long-distance transport, even in the
absence of local spin conservation.
While extensive studies have been devoted to spin

textures in low dimensions, three-dimensional (3D) tex-
tures such as hedgehogs and hopfions are recently attract-
ing more attention for their rich physics in topological
phases [23–26] and dynamic properties [21,22,27,28].
Hedgehogs exist inherently in 3D Heisenberg magnets.
In contrast to 3D skyrmions [29] and hopfions [21,22],
which can be annihilated by shrinking them down to
the size of the atomic spacing without affecting spins far
away, hedgehogs cannot be removed via local surgeries.
The hedgehog flow can therefore be more stable against
thermal fluctuations, and has potential applications in
memory, logic devices, and energy storage [30–35].

In this Letter, we explore both topological and energetic
properties of magnetic hedgehogs in 3D Heisenberg
ferromagnets to investigate their long-distance transport,
the viability of which is considered from the following
three aspects. A topological conservation law, which is
valid in both the magnetically ordered and disordered
phase, defines the framework of a hydrodynamic descrip-
tion of hedgehog currents. While (anti)hedgehogs are
bound by a linear potential energy in the magnetically
ordered phase, they become deconfined and hence mobile
in the paramagnetic phase. We propose a nonlocal transport
measurement in the setup as shown in Fig. 1. A conserved
hedgehog flow can be driven by a transverse electric
current applied at an adjacent metal contact, resulting in
a nonlocal signal decaying inversely proportional to the
system length in the flow direction.
Topological conservation law.—Let us first consider a

3D insulating ferromagnet without accounting for its
detailed energetics, but focusing on topological aspects
of its vectorial order parameter nðr⃗; tÞ, where the bold face
is used for axial vectors and the vector arrow marks polar
vectors. In the ordered phase, the collinear magnetic order
can be described by the directions of n assuming jnj ¼ 1.
This would render a sphere order-parameter space S2, with
a nontrivial second homotopy group π2ðS2Þ ¼ Z [36]. A
point defect, named hedgehog, with an integer-valued
topological charge can correspondingly be identified in
nðr⃗; tÞ. A familiar example for a hedgehog placed at the
origin is n0 ¼ fx; y; zg=jr⃗j.
In the paramagnetic phase, the corresponding (coarse-

grained) vector field nðr⃗; tÞ ∈ R3 realizes an R3 → R3

mapping at any given time t. This field texture is devoid of
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Transport of vorticity on curved surfaces

Topological transport of vorticity on curved magnetic membranes
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In this work, we study the transport of vorticity on curved dynamical two-dimensional magnetic
membranes. We find that topological transport can be controlled by geometrically reducing symme-
tries, which enables processes that are not present in flat magnetic systems. To this end, we construct
a vorticity 3-current which obeys a continuity equation. This continuity equation is immune to local
fluctuations of the magnetic texture as well as spatiotemporal fluctuations of the membrane. We
show how electric current can manipulate vortex transport in geometrically nontrivial magnetic
systems. As an illustrative example, we propose a minimal setup that realizes an experimentally
feasible energy storage device.

Introduction.—Much progress has been made both the-
oretically and experimentally in understanding, engineer-
ing, and driving topological magnetic textures [1–12].
This has resulted in numerous proposals that exploit
spin texture topology for technological applications, such
as domain wall and skyrmion racetracks [13–17], energy
storage [18–20], long-range signal transport [21–29], and
quantum information processing [30–32]. The utility of
these spin structures is rooted in the metastability of
topological excitations and the variety of ways to ma-
nipulate them [4, 11, 33–35]. To foster the development
of these technologies, it is crucial to innovate avenues
to drive topological textures. Motivated by the inter-
play between geometry and topology [36–38], we seek a
way to geometrically control topological transport. Previ-
ous works have investigated geometrical e↵ects in curved
low-dimensional magnetic systems, primarily focusing on
energetic stabilization of topological spin textures [39–44].
These developments are spurred by advancements in fab-
rication and imaging techniques for complex magnetic
structures [43, 45–47].
In this letter, we study the transport of vorticity on

curved magnetic membranes. To this end, we demonstrate
that magnetic textures on membranes with curvature ex-
hibit topological hydrodynamics [48] governed by a robust
continuity equation rooted in the homotopic properties
of the magnetic order parameter space, rather than any
structural symmetries. In contrast to previous studies
focused on vortex transport in flat magnetic films [20–
22, 49], this work uses the spatial structure of magnetic
systems to reduce symmetries, thereby enabling processes
that are otherwise ruled out on symmetry grounds. We
discuss how a nontrivial geometry can allow electric cur-
rent to energetically bias vorticity injection on the mem-
brane. Finally, we illustrate a potential functionality of
this physics by devising an experimentally feasible energy
storage concept.
Topological continuity equation.—We begin by dis-

cussing the geometric properties of a curved dynamical
magnetic membrane. The membrane is a two-dimensional
orientable manifold M, parameterized by coordinates

FIG. 1. Depiction of manifold M. The winding of the magneti-
zation m (blue arrows) on the contour C (red line) determines
the vortex charge enclosed by C. The local tangent planes
Tp and Tp0 are shown for points p and p0, along with the
local frame {e1, e2,n}. The leftmost tangent planes depict
the gauge potential A` at point p0, which captures changes of
e1 and e2 along ⇠`. The inset shows vorticity flux J being
pumped transverse to a metallic wire (purple curve) carrying
electric current density j.

⇠1 and ⇠2, with boundary @M. M is embedded in the
Euclidean space R3 from which it inherits the metric
gij . At every point (⇠1, ⇠2) on M and for any time t,
we identify a unit normal vector n(t, ⇠1, ⇠2) and define
unit vectors spanning the local tangent plane, e1(t, ⇠1, ⇠2)
and e2(t, ⇠1, ⇠2). The orthonormal triad {e1, e2, n} is
the local frame. M may smoothly change over time, as
long as its topology remains unchanged, i.e. M is not
cut. Figure 1 depicts the simplest case in which M is
homeomorphic to a closed disk.
The U(1) gauge freedom in specifying the local frame,

corresponding to simultaneous rotations of e1 and e2
about n, translates into the gauge potential [50–52]

Aµ = e1 · @µe2, (1)

which is a smooth field describing changes of the local
frame in space and time. Once the e1 and e2 vector fields
are specified, the gauge is fixed. The spatial component
of the gauge, Ai, is the smooth connection on M, which
captures changes in e1 and e2 along ⇠i [51]. The gauge-
invariant field strength tensor stemming from Aµ is

Fµ⌫ = @µA⌫ � @⌫Aµ. (2)
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• Can nontrivial geometry reduce the symmetries enough to allow to 
drive topological hydrodynamics even in a single magnetic layer?

magnetization, and can easily be studied using electron
holography10,14 or magnetometry47,48. More complex domain
patterns appear in tubular structures with larger diameters
in the range of some micrometres, which can be fabricated
using strain engineering49,50. These tubular architectures are
particularly appealing as magnetoimpedance sensors for
magnetoencephalography36,37 or as compact giant magnetoresis-
tance sensors for in-flow cytometry51,52. 2D magnetic
nanomembranes with either in- or out-of-plane anisotropy
rolled up into tightly wound tubular systems offer well-defined
magnetic domain patterns including homogeneous53–55 and
multidomain states32,33 or even radial spin textures34,35. State-
of-the-art characterization of their physical properties relies on
integral measurement techniques, such as ferromagnetic
resonance spectroscopy54,55, magnetoresistance33,46,51,56 and
magnetometry measurements47,48, and on the analysis of 2D
projections of magnetization patterns recorded using Kerr32,33

and X-ray43 microscopy. Although these approaches provide
information on the magnetic properties, they cannot be applied to
reconstruct the 3D magnetic domain pattern. A proper
identification can only be accomplished by tomographic imaging.

Circulating magnetization patterns. As a first example, we
analyse the XMCD contrast of simple magnetization textures,
such as azimuthal domains with in-plane magnetization, by
correlating them to XMCD contrast simulations. This approach is
similar to that of electron holography on tubular/helical
structures10,14. The present magnetic tubular architectures with a
defined magnetization are prepared via strain engineering49,50. In
particular, lithographically prepatterned strained magnetic
nanomembranes are released from the substrate by selectively
etching the sacrificial buffer layer and rolled up into tubular
architectures by reducing the internal strain gradient (Fig. 2a).

The tubular architectures with a diameter of about 7 mm and 2.5
windings (Fig. 2b) and circulating magnetization (Fig. 2c) are
picked up and lifted via a micromanipulator inside a cross-beam
workstation and fixed onto a Pt-coated Si wafer by ion beam
activated Pt deposition (Fig. 2d). The tube exhibits an elliptical
cross-section with a major and minor axis of x¼ (8.4±0.2)mm
and y¼ (5.5±0.2) mm, respectively, and is tilted by b¼ (31±1)!
with respect to the surface normal. Using nickel as both strained
and functional magnetic layer provides a negative magneto-
striction constant and therefore a transverse magnetization before
rolling up (Fig. 2e). After rolling up, a low remanence
magnetization of 0.4 times the saturation magnetization was
found by longitudinal magneto-optical Kerr effect magnetometry.
This is indicative for a circulating magnetization with azimuthal
or helical alignment, which could have been verified by Kerr
microscopy (Fig. 2c). As the limited depth of focus of Kerr
microscopy allows only for visualizing a very narrow stripe along
curved tubes (Fig. 2c), different types of circulating magnetization
cannot be distinguished. Using T-XPEEM, this limitation can be
overcome by projecting the 3D magnetization onto the planar
substrate43.

The spatial orientation of the tube with respect to the X-ray
beam propagation direction inside the XPEEM is determined by
analysing the angle-dependent projection of the elliptical cross-
section of the tube onto the planar substrate (Fig. 3a). Tube
orientations with a tilt towards and away from the incidence
direction of the X-ray beam are referred to as 0! and 180!,
respectively. The magnetization of the standing tube is visualized
by imaging the secondary photoelectrons generated in the
substrate after penetrating the tube by circularly polarized
photons with an energy corresponding to the Ni L3 absorption
edge. The number of transmitted photons depends on the local
magnetization due to the XMCD effect; thus, the projected
magnetic pattern reflects the local magnetization in the tube. The
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Figure 2 | Fabrication and characterization of circulating spin textures. (a) Preparation of azimuthally magnetized tubular architectures via selective
rolling up of a prepatterned strained nanomembrane with transverse magnetic easy axis (indicated by red and blue, and arrows). (b) Electron micrographs
of rolled-up tubes and manipulation. Scale bar, 50mm. (c) Transverse magnetization component along a 2-mm wide stripe at the very top of the tube
visualized by longitudinal Kerr microscopy. Scale bar, 5 mm. (d) Electron micrograph of a vertically fixed Ni tube with circulating magnetization overlaid
with XMCD shadow contrast patterns recored by T-XPEEM at various projection angles. The X-ray beam penetrates the top end of the standing tube
(dashed rectangle) and projects the magnetization onto the substrate 150 mm away from the tube location (indicated by wiggly lines). The lengths of major
and minor axis are x¼ (8.4±0.2)mm and y¼ (5.5±0.2) mm, respectively. Scale bar, 5 mm. (e) Magnetic hysteresis loops of planar (dashed) and rolled-up
(solid) nanomembranes shown for longitudinal and transverse sensitivity suggest circulating (azimuthal or helical) magnetization within the rolled-up
nanomembrane.
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while small wires favor TW. The crossover diameter is in 
the range of ( )∼70 90  nm.

5.2. Rolled-up magnetic nanomembranes:  
magnetic Swiss rolls

More complex, yet deterministic, domain patterns (figure 24) 
appear in tubular architectures with diameters in the lower 
micrometer range fabricated by strain engineering rolled-up 
nanotech. Rolled-up nanotech [87, 88] relies on differential 
strain in thin solid films deposited on top of a sacrificial layer 
(figure 25). Such systems can be realized by single materials 
(e.g. partially strain relaxed Si films), by bilayers of the same 
material class (InGaAs/GaAs bilayer [355]) or different mat-
erial classes (InGaAs/metal [356, 357]). The membranes to 
be rolled-up are defined by either lithography patterning or 
mechanical scratching. The layer system is released from the 
substrate by e.g. wet chemical underetching. The strain gradi-
ent generates a bending moment to (partially) relax and initiates 
the rolling of the layer system. It is possible to design a strained 
layer system and to deposit an additional layer, e.g. magnetic 
materials. The functional layer inherits the radial symmetry of 
the rolled-up layer [358]. The resulting microscopic structure of 
these rolled-up nanomembranes resembles Swiss rolls, which 
are morphologically and topologically distinct to the cylinders 
and hollow tubes.

Rolled-up tubes with diameters down to only a few nanom-
eters can be fabricated using strained semiconductor and sac-
rificial layers [359]. In this case, the samples consisting of 

epitaxial In(Ga)As/GaAs bilayers with different total thick-
nesses are grown using molecular beam epitaxy (MBE). The 
rolling process includes ex situ selective etching performed 
with diluted HF solutions enabling a selectivity to AlAs [360, 
361]. Typical SEM images of the InGaAs/GaAs rolled-up 
tubes are shown in figure 26. Furthermore, the scaling of the 
nanotubes diameter with the total InAs/GaAs bilayer thickness 
is presented in figure 26(c) revealing the possibility to obtain 
rolled-up tubes with diameters down to several nanometers.

As small tube diameters can be achieved relying on lat-
tice mismatched epitaxially grown superlattices, much 
efforts were devoted to optimizing the growth of magn etic-
material-containing heterostructures to fabricate rolled-
up magn etic nanomembranes of small diameters. Heusler 
alloys are compatible with compound and elemental semi-
conductors [362, 363] and provide as half-metallic com-
pounds a spin polarization at the Fermi level of up to 100% 
[364–366], which is highly relevant for prospective spin-
tronic applications. In particular, binary intermetallic Fe3Si 
from the family of Heusler alloys can be grown on GaAs(0 
0 1) substrates at nearly perfect lattice match [367–369]. 
Even for good crystalline quality of the radial superlattices 
 (figure 27), e.g. in the case of InGaAs/Fe3Si superlattices 
[100, 370, 371], typical diameters of the rolled-up archi-
tectures are 1.2 µm [371]. To form an epitaxial bilayer, the 
MBE-grown III–V surface of InGaAs is thermally deoxi-
dized and a 20 nm-thick Fe3Si layer is grown pseudomorph-
ically on top of the InGaAs layer by coevaporation of Fe 
and Si at 350°C in a separate thermal evaporation cham-
ber. Although the structural characterization reveals clear 
pseudo morphic growth of Fe3Si on InGaAs and even indi-
cates a lattice-matched crystalline bonding of the two layers 
(figure 27), no distinguishable interface region is observed 
as would be expected from other semiconductor/metal [357] 
or semiconductor/semiconductor rolled-up stacks [355, 
372–374]. We speculate that by tuning the deposition condi-
tions, growth temper ature or thickness of Fe3Si, one would 
be able to achieve tubes with smaller radii.

Similar diameters of Swiss rolls in the range of 4 µm are 
achievable when preparing heterostructures of strained semi-
conductor bilayers, e.g. InGaAs/GaAs with a ferromagnetic 
metal layer, e.g. Permalloy [41, 42, 104]. After rolling up, 
those structures (figure 28(a)) resemble novel ferromagnetic 
microtube ring resonators. Balhorn et  al [41] investigated 
the spin-wave spectrum using high-resolution microwave 

Figure 25. Schematic illustration of the fabrication of rolled-up 
tubes. An initially strained layer system is deposited on top of 
a sacrificial layer. An optional, arbitrary functional layer can be 
deposited on top. To obtain a rolled-up tube, a starting window is 
defined and the layer structure is released from the substrate by 
selective underetching. Reprinted with permission from [358].

Figure 24. Schematics of magnetic domain patterns in 
ferromagnetic thin films resembling hollow cylinders. Top row: 
Circulating (in-plane) magnetization textures without (azimuthal) 
and with (helical) longitudinal components. Circulation sense is 
indicated by red or blue. Bottom row: Radial and longitudinal 
magnetization configuration. State radial II illustrates multidomain 
states with radially magnetized domains. Each configuration 
possessing distinct magnetic and magnetoelectric properties can 
be fabricated by rolling up planar films. Reprinted with permission 
from [291].
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Hydrodynamics on curved surfaces

Topological transport of vorticity on curved magnetic membranes
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In this work, we study the transport of vorticity on curved dynamical two-dimensional magnetic
membranes. We find that topological transport can be controlled by geometrically reducing symme-
tries, which enables processes that are not present in flat magnetic systems. To this end, we construct
a vorticity 3-current which obeys a continuity equation. This continuity equation is immune to local
fluctuations of the magnetic texture as well as spatiotemporal fluctuations of the membrane. We
show how electric current can manipulate vortex transport in geometrically nontrivial magnetic
systems. As an illustrative example, we propose a minimal setup that realizes an experimentally
feasible energy storage device.

Introduction.—Much progress has been made both the-
oretically and experimentally in understanding, engineer-
ing, and driving topological magnetic textures [1–12].
This has resulted in numerous proposals that exploit
spin texture topology for technological applications, such
as domain wall and skyrmion racetracks [13–17], energy
storage [18–20], long-range signal transport [21–29], and
quantum information processing [30–32]. The utility of
these spin structures is rooted in the metastability of
topological excitations and the variety of ways to ma-
nipulate them [4, 11, 33–35]. To foster the development
of these technologies, it is crucial to innovate avenues
to drive topological textures. Motivated by the inter-
play between geometry and topology [36–38], we seek a
way to geometrically control topological transport. Previ-
ous works have investigated geometrical e↵ects in curved
low-dimensional magnetic systems, primarily focusing on
energetic stabilization of topological spin textures [39–44].
These developments are spurred by advancements in fab-
rication and imaging techniques for complex magnetic
structures [43, 45–47].
In this letter, we study the transport of vorticity on

curved magnetic membranes. To this end, we demonstrate
that magnetic textures on membranes with curvature ex-
hibit topological hydrodynamics [48] governed by a robust
continuity equation rooted in the homotopic properties
of the magnetic order parameter space, rather than any
structural symmetries. In contrast to previous studies
focused on vortex transport in flat magnetic films [20–
22, 49], this work uses the spatial structure of magnetic
systems to reduce symmetries, thereby enabling processes
that are otherwise ruled out on symmetry grounds. We
discuss how a nontrivial geometry can allow electric cur-
rent to energetically bias vorticity injection on the mem-
brane. Finally, we illustrate a potential functionality of
this physics by devising an experimentally feasible energy
storage concept.
Topological continuity equation.—We begin by dis-

cussing the geometric properties of a curved dynamical
magnetic membrane. The membrane is a two-dimensional
orientable manifold M, parameterized by coordinates

FIG. 1. Depiction of manifold M. The winding of the magneti-
zation m (blue arrows) on the contour C (red line) determines
the vortex charge enclosed by C. The local tangent planes
Tp and Tp0 are shown for points p and p0, along with the
local frame {e1, e2,n}. The leftmost tangent planes depict
the gauge potential A` at point p0, which captures changes of
e1 and e2 along ⇠`. The inset shows vorticity flux J being
pumped transverse to a metallic wire (purple curve) carrying
electric current density j.

⇠1 and ⇠2, with boundary @M. M is embedded in the
Euclidean space R3 from which it inherits the metric
gij . At every point (⇠1, ⇠2) on M and for any time t,
we identify a unit normal vector n(t, ⇠1, ⇠2) and define
unit vectors spanning the local tangent plane, e1(t, ⇠1, ⇠2)
and e2(t, ⇠1, ⇠2). The orthonormal triad {e1, e2, n} is
the local frame. M may smoothly change over time, as
long as its topology remains unchanged, i.e. M is not
cut. Figure 1 depicts the simplest case in which M is
homeomorphic to a closed disk.
The U(1) gauge freedom in specifying the local frame,

corresponding to simultaneous rotations of e1 and e2
about n, translates into the gauge potential [50–52]

Aµ = e1 · @µe2, (1)

which is a smooth field describing changes of the local
frame in space and time. Once the e1 and e2 vector fields
are specified, the gauge is fixed. The spatial component
of the gauge, Ai, is the smooth connection on M, which
captures changes in e1 and e2 along ⇠i [51]. The gauge-
invariant field strength tensor stemming from Aµ is

Fµ⌫ = @µA⌫ � @⌫Aµ. (2)
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plane and fluctuate in both magnitude and direction. For flat systems, it is known that the winding density along a
curve parameterized is m2

k@`'/2⇡ [1]. We can generalize this result for curved systems by making the substitution
@i' ! Di' so that the covariant winding is

d⇠i
1

2⇡
m2

kDi' = d⇠i
1

2⇡
m2

k(@i'�Ai), (S5)

which is also gauge-invariant. The topological charge Q enclosed on a patch S of the manifold is consequently

Q =

Z

@S
⇢w =

1

2⇡

Z

@S
d⇠im2

kDi', (S6)

where ⇢w is the gauge-invariant winding 1-form. The relation between Q and the winding density is given by Eq. (5)
in the main text. Thus, we have constructed the winding density for a curved magnetic membrane and connected it to
the gauge-invariant topological charge Q.

It is advantageous to be able to write the winding density ⇢w in terms of m rather than the in-plane angle '. Doing
so allows us to describe the topological charge density using a nonsingular vector field m. On the other hand, the '
field is not defined at the center of the vortex. To this end, we define the covariant derivative of m as

rµm ⌘ (@µm
a)ea �Aµn⇥m. (S7)

This is identical to Eq. (4) of the main text. Here, Aµ = e1 · @µe2 can be understood as a gauge potential that tracks
changes in the local frame in space as well as time. The covariant derivative acts on m by first projecting out any
components parallel to the normal vector n, taking the derivative @i, and then projecting the result back to the local
tangent plane. Thus the covariant derivative of any vector in R3 will always result in a vector lying in the local tangent
plane. Using this covariant derivative, we can express the winding 1-form in terms of m as

⇢w = d⇠in · (m⇥rim)/2⇡, (S8)

which is the integrand of Eq. (13) in the main text. Finally, we elaborate on a point made in the last paragraph of
the section “Gauge-invariant topological charge” regarding the quantization of Q. Generally, when there is nonzero
Gaussian curvature, even when taking the strong-easy surface limit, Q is noninteger valued. A cartoon depiction of
the vorticity density J 0 for flat and curved membranes, with and without taking the easy-surface limit, is depicted in
Fig. 1. Note that J 0 is given by Eq. (3) of the main text.

FIG. 1. Cartoon depiction of the vorticity density for flat and curved magnetic membranes, and for singular and nonsingular
magnetic textures. Panel (a) shows that for a flat magnetic system, taking the strong easy-plane limit in which m2

k = 1 results
in the magnetic texture becoming singular, and the vorticity density is a �-function at the location of the vortex. Panel (b)
shows that relaxing the strong easy-plane limit and allowing the magnetic texture to be nonsingular results in broadening of the
delta function. Panels (c) and (d) shows that the e↵ect of nonzero curvature is to add a background o↵set.

<latexit sha1_base64="4sOKTQTa4r5TkQ3Zv7KB5jnP4jE=">AAACMnicbVDLSsNAFJ3UV62vqks3wSK4sSTF18JFQRe6q2Af0IQwmdy0QycPZyaFEvpNbvwSwYUuFHHrRzhpi9bWAwOHc+69c+9xY0aFNIwXLbewuLS8kl8trK1vbG4Vt3caIko4gTqJWMRbLhbAaAh1SSWDVswBBy6Dptu7zPxmH7igUXgnBzHYAe6E1KcESyU5xZsrh1p9zOMuteA+oX0rxlxSzH7kIyvAsuv6KQwd0yJeJKdKfq2KUywZZWMEfZ6YE1JCE9Sc4pPlRSQJIJSEYSHaphFLO81mEwbDgpUIiDHp4Q60FQ1xAMJORycP9QOleLofcfVCqY/U6Y4UB0IMAldVZjuKWS8T//PaifTP7ZSGcSIhJOOP/ITpMtKz/HSPciCSDRTBhFO1q066mGMiVcoFFYI5e/I8aVTK5mn55Pa4VL2YxJFHe2gfHSITnaEqukY1VEcEPaBn9IbetUftVfvQPselOW3Ss4v+QPv6BnifrLM=</latexit>

Di' ⌘ @i'� e1 · @ie2where

• Net topological charge is defined in terms of a winding 1-form (the 
density is constructed via exterior derivative, utilizing generalized 
Stokes’ theorem):
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the gauge-invariant topological charge Q.
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Taking the strong easy-surface limit, the topological charge on a patch S (upon picking a smooth gauge) of the
membrane can be evaluated as

Q = N � 1

2⇡

Z

S
d⇠1d⇠2

p
gK, (S9)

where K is the local Gaussian curvature and g is the determinant of the metric. The topological charge is the di↵erence
of an integer N , which counts the number of vortices on S, and a geometrical background o↵set that spoils the
discreteness of Q. The e↵ect of this background o↵set is depicted in panels (c) and (d) of Fig. 1. When the strong-easy
surface limit is taken, we find that the vorticity density sharply peaks at the location of the vortex. In the extreme case,
when |mk| = 1 everywhere except for the location of the vortex, at which there is a singularity in the m vector field,
J 0 is proportional to the �-function. However, by relaxing the strong easy-surface limit, we allow for a nonsingular
magnetic texture and the vorticity density is no longer a �-function. In this case, the �-function broadens, as shown in
panels (b) and (d).

(ii) Formulation of topological hydrodynamics

In this section, we start from the covariant winding density and construct the vorticity 3-current, J µ. We first
specialize to the static manifold, in which the local frame has no time dependence. We will show that J µ satisfies
the topological continuity equation @µJ µ = 0, even when m can fluctuate. Furthermore, we demonstrate that the
continuity equation is still satisfied when the membrane is dynamic and the time dependence of the local frame is
restored. To do so, we will formulate topological hydrodynamics using di↵erential forms, as discussed in the “Discussion”
section of the main text. The topological charge on a patch S of the manifold M is

Q =

Z

@S
⇢w =

1

2⇡

Z

@S
d⇠in · (m⇥rim), (S10)

which is defined as the integral of the winding 1-form ⇢w over the boundary of the patch, @S. After defining the
winding 1-form, we invoke the generalized Stoke’s theorem to define the vorticity 2-form as the exterior derivative of
⇢w. We have that

⇢v ⌘ d⇢w = d⇠i ^ d⇠j
1

2⇡
n ·

✓
rim⇥rjm+

m⇥ [ri,rj ]m

2

◆

= d⇠i ^ d⇠j
1

2⇡
n ·

✓
rim⇥rjm� 1

2
Fijm

2
k

◆
.

(S11)

Here, d ⌘ d⇠i ^ @i is the exterior derivative and Fij = @iAj � @jAi is the gauge-invariant curvature field which arises
from the connection Ai on M. The curvature field Fij is related to the Gaussian curvature K by K = ✏0ijFij/2

p
g.

Here, we use the Levi-Civita convention that ✏012 = 1. Furthermore, Fij is the ”magnetic” component of the field
strength tensor Fµ⌫ given by Eq. (2) of the main text. The scalar vorticity density on the manifold is the Hodge dual
of the vorticity 2-form and is written as

?⇢v =
✏0ij

2⇡
p
g
n ·

✓
rim⇥rjm� 1

2
Fijm

2
k

◆
. (S12)

In this expression, we have used the Hodge star map “?”, which maps a p-form in d-dimensional space to its Hodge
dual, a (d� p)-form. The mapping is defined to be [4]

?d⇠i1 . . . d⇠ip =
1

(d� p)!

p
ggi1j1 . . . gipjp✏j1...jpjp+1...jdd⇠

jp+1 . . . d⇠jd . (S13)

For any change of the charge Q on S, we expect to find a vorticity flux jv through the boundary @S, which changes
the winding along the boundary. That is, we wish to find a jv that satisfies the continuity equation

?@t⇢v + ?d ? jv = 0. (S14)

The first term in Eq. (S14), ?@t⇢v, is the time derivative of the vorticity density, and the second term ?d ? jv is the
divergence of the vorticity flux. To construct jv, we return to the generalized Stokes’ theorem, which states that
⇢v = d⇢w. Taking the time derivative and applying the Hodge star operator to both sides of this expression, we get

?@t⇢v � ?@td⇢w = 0 (S15)

in the strongly easy-plane limit:

(Mermin-Ho)



“Simplified” topological energy storage
3

chirality-induced spin selectivity e↵ect, which arises from
the coupling of the electron linear momentum to spin de-
grees of freedom in chiral materials [60, 61]. Furthermore,
in the limit of strong spin-orbit coupling, dimensional
analysis suggests ⇣ ⇠ ~w�2

F /e, where �F is the Fermi
wavelength, e is the positive elementary electric charge,
and w is the width of the wire. We assume w � �F

and that w is small enough for ⌧ to be (approximately)
uniform over the wire width.

The work done on the magnetic texture is

�W =

Z
d` dt ⌧ · (m⇥ @tm) = ⇣Tj �Q, (7)

where �Q =
R
dtd`v · (J ⇥ n) is the vorticity flow across

the wire. The e↵ective vortex chemical potential is given
by µ ⌘ �W/�Q = ⇣Tj. In the high-temperature param-
agnetic regime, a linear relation µ / j should still hold,
albeit with a prefactor renormalized by thermal fluctua-
tions of |m|.
Vortex circuit elements.—Fig. 2 illustrates a possible

setup in which torsion gives rise to pumping of vorticity.
Here, a magnetic insulating membrane (which can either
be ferro- or antiferromagnetic) of thickness h and length
lm wraps around a cylindrical insulating core. A metal
wire of width w and thickness � is wrapped around the
cylindrical magnetic membrane of radius r as a uniform
helix with helix angle ✓. Systems with similar geometry,
in the form of rolled magnetic membranes, have been
fabricated [62]. The uniform helix has a constant torsion
T = sin(2✓)/2r, allowing electric current flow in the wire
to drive a vorticity flux J , which we assume is transverse
to the wire.

J can be decomposed into components orthogonal and
parallel to the z axis. The former accumulates winding
along z, which may unwind at the ends of the cylin-
der. The latter, on the other hand, builds up winding
azimuthally, which is energetically protected by the easy-
surface anisotropy. We are interested in the vortex cur-
rent flowing in the z direction, Iv = 2⇡r|J | sin ✓, which
is driven by the vortex motive force IR generated by the
electric current. Here,

R =
⇣Tlm
2⇡rw�

tan ✓ (8)

is the e↵ective drag coe�cient [59]. Di↵erent from our
previous works on energy storage using topological spin
textures [19, 20], R is unique to the nontrivial geometry
of this setup and is not present in flat systems. Upon
substitution of T = sin(2✓)/2r, we find R / sin2 ✓. In
the linear response, Iv / R, so ✓ = ⇡/2 maximizes the
vortex current.

The membrane behaves like a series RvCv circuit in
response to nonzero vortex flow, exhibiting an e↵ective
vortex resistance Rv and e↵ective winding capacitance Cv.
As dictated by the bulk-boundary correspondence, the

FIG. 2. Schematic of a minimal setup for geometrically con-
trolled vortex transport. A metallic wire is wrapped around
a cylindrical magnetic insulator membrane as a helix. An
applied electric current I induces vorticity flux J transverse
to the wire, resulting in vorticity current Iv along z. The side
panel indicates that this system realizes a battery.

vortex current “winds up” the magnetic texture, thereby
storing exchange energy. The sti↵ness of the magnetic
texture engenders Cv. On the other hand, Rv can arise
due to Gilbert damping, defects, and vortex-antivortex
collisions. Following Ref. [20], we estimate Cv and Rv

by exploiting the duality between the XY magnet and
two-dimensional electrostatics [57]. This yields

Cv =
1

A

r

2⇡hlm
, Rv =

1

�v

lm
2⇡r

, (9)

where ��1
v is the vortex resistivity and A is the magnetic

sti↵ness [59]. With the circuit elements R, Rv, and Cv in
hand, we set out to construct topological circuits [20].

Coupled topological circuits.—The setup we have been
discussing can be described by coupled vorticity and elec-
tric circuits, which are depicted in Fig. 3. The applied
electric current I in the wire supplies an e↵ective vortex
motive force IR to the vorticity circuit. This results
in build-up of winding and an e↵ective vortex voltage
Vv = �Q/Cv. The backaction of vortex dynamics on the
electrical response induces an electromotive force IvR on
the electric circuit, which is written down by invoking
Onsager reciprocity. We note that, like ordinary charge,
vorticity is even under time reversal. Kirchho↵’s law for
the coupled electrical and vorticity circuits is thus

✓
V
Vv

◆
=

✓
R+ L d

dt �R
�R Rv

◆✓
I
Iv

◆
. (10)

Here, V is the voltage supplying the current I, L is the
self-inductance, and R is the electrical resistance. The
resistance matrix is symmetric as dictated by Onsager
reciprocity, and positive-definite according to the second
law of thermodynamics [63, 64]. The latter constraint
enforces 0 < ⇠ < 1, where ⇠ ⌘ R2/RRv parameterizes
the relative strength of the o↵-diagonal to the diagonal
elements of the resistance matrix.
Fourier transforming Eq. (10) into the frequency do-

2

The “electric” component, F0i, vanishes for static mem-
branes. The “magnetic” component, Fij , relates to the
Gaussian curvature K by K = ✏0ijFij/2

p
g. Here, g is

the determinant of the metric and the Levi-Civita tensor
convention is ✏012 = 1. Note, we make a convention in
which Greek indices µ = 0, 1, 2 $ t, ⇠1, ⇠2 label space-
time coordinates and Latin indices i = 1, 2 $ ⇠1, ⇠2 label
spatial coordinates, while repeated indices are summed
over.

We assume the magnetic texture is described by a con-
tinuum coarse-grained vector field m(t, ⇠1, ⇠2) realizing
the map M 7! R3 at all times t. This description holds
over a broad temperature range, from order to disorder.
In the low-temperature (locally) ordered phase, m is nor-
malized by its T = 0 value and the membrane can be
either ferromagnetic or antiferromagnetic. m is the local
spin density in the former case, whereas in the latter
case, m is the local Néel order. In the high-temperature
paramagnetic regime, m may fluctuate in both magnitude
and direction. Irrespective of any local fluctuations of m
or dynamics of M, the field m exhibits topological hydro-
dynamics governed by the continuity equation @µJ µ = 0,
where

J µ =
✏µ⌫⇢

2⇡


n · (r⌫m⇥r⇢m)� 1

2
F⌫⇢m

2
k

�
, (3)

written using the covariant derivative of m

rµm ⌘ (@µm
a)ea �Aµ(n⇥m), (4)

which is gauge-invariant. Here, mk is the projection
of m onto the local tangent plane. J µ = (J 0,J ) is
the vorticity 3-current, where J 0 is the vorticity density
and J is the vorticity flux. Furthermore, J µ is gauge-
invariant under “small” gauge transformations which
preserve the smoothness of Aµ so that the covariant
derivative is well-defined [50, 53, 54]. In the absence
of curvature and membrane dynamics, the frame can
be made constant and the vorticity 3-current reduces to
J µ = ✏µ⌫⇢n · (@⌫m⇥ @⇢m)/2⇡ [20, 22].

The continuity equation is rooted in topology and is not
derived from Noether’s theorem, so it is immune to any
structural imperfections or anisotropies. The behavior of
the system, on the other hand, will be highly sensitive to
these details [3, 55]. In this work, we will focus on systems
in which magnetic vorticity may be the natural transport
quantity. We consider magnetic membranes with easy-
surface anisotropy, i.e. there is a hard anisotropy axis
collinear with the surface normal [41, 56], that endows
the magnetic texture with an XY character [3, 57].

Gauge-invariant topological charge.—To construct the
gauge-invariant vortex charge, the starting point is to
construct the magnetic winding. For flat magnetic films, it
is known that the winding along a curve is m2

k@`'/2⇡ [20,

22, 27], with ` the arclength. Following this structure, the
winding on curved membranes generalizes to the covariant

winding m2
kDi'/2⇡ ⌘ m2

k(@i'�Ai)/2⇡, which is gauge-

invariant. Here, ' is the polar in-(tangent)-plane angle
of mk relative to e1. For ' to be well-defined, we require
|mk| > 0 everywhere on M, except for isolated points.
Invoking the generalized Stokes’ theorem [36, 58], the
gauge-invariant topological charge on a patch S is

Q =
1

2⇡

Z

@S
d⇠i m2

kDi' =

Z

S
d⇠1d⇠2J 0. (5)

We see that the integrated winding around the boundary
@S equals the vorticity density integrated over S. In
fact, we construct the conserved density J 0 by taking the
exterior derivative of the winding 1-form in the leftmost
integral. We articulate this construction later in the text
and in the Supplemental Material [59].

Even when specializing to the strong easy-surface limit
where |mk| = 1, Q is noninteger-valued if M has nonzero
Gaussian curvature. In this limit, Q can be evaluated for a
patch S homeomorphic to a disk (upon choosing a smooth
gauge) to be N �

R
S dSK/2⇡. This is the di↵erence of an

integer N which counts the number of vortices on S and
a geometric background o↵set that spoils the discreteness
of Q. N is the S1 winding number connecting Q to its
homotopic roots.
Torsion-enabled pumping of vorticity.—Having estab-

lished a conserved topological charge, we now wish to
control it. Suppose we wrap a magnetic membrane with
a metallic wire parameterized by unit tangent vector v(`),
with ` the arclength, and induce electric current flow
in the wire. Following the approach developed in Refs.
[20, 22], we construct a torque acting on a smooth mag-
netic texture, which energetically biases vorticity injection
transverse to the wire, as depicted in the inset of Fig. 1.
To enable this process, we use the local torsion of the wire,
T(`) = v · (a⇥ @`a), to geometrically reduce symmetries
[58]. The torsion is the helical winding of the principal
normal vector a(`) = @`v/|@`v| along the wire. Notably,
torsion is a pseudoscalar, meaning Tn is a pseudovector
with identical spatial properties to magnetization. In
this scheme, the role Tn plays in reducing symmetries is
analogous to that of magnetization M in Refs. [20, 22].
The torque, which must be gauge-invariant, is con-

structed on general symmetry grounds so that the work
done on the magnetic texture is proportional to the vor-
ticity flow across the wire. Focusing, for simplicity, on
the low-temperature limit where |m| = 1, a torque (per
unit length) satisfying these constraints is

⌧ =
⇣j

⇡
(Tn ·m) [r`m+ n @`(n ·m)] . (6)

Here, j is the electric current density, and ⇣ is a phe-
nomenological parameter characterizing the geometry-
enabled dissipative coupling of electric and vortex dynam-
ics. Importantly, this torque is only permitted in the
presence of spin-orbit coupling. This reminds us of the

-  (pseudoscalar) “torsion of a curve” (electrical wire), which can 
effectively (from the symmetry point of view) convert the local 
geometric normal to the surface into an out-of-plane magnetization
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FIG. 3. Schematic of the vorticity (blue) and electric (red)
circuits, which are coupled through R (purple). R gives rise
to an e↵ective vortex motive force IR on the vorticity circuit
and, reciprocally, an electromotive force IvR on the electrical
response. Rv is tunable, allowing switching between vortex
conducting and insulating regimes. The side panel depicts
setups with positive and negative T.

main, we find the e↵ective impedance is

Z(!) ⌘ V (!)

I(!)
= R+ i!L� i!CvR2

1 + i!CvRv
. (11)

Similar to conventional RC circuits, here, ⌧ = RvCv =
(4⇡2Ah�v)�1 is the time scale for loading and discharging
vortices from the magnetic texture. In the high-frequency
regime, ! � 1/⌧ , the last term in Eq. (11) is approxi-
mated as �R2/Rv. The vorticity circuit functions as a
battery, reducing the e↵ective resistance of the electrical
circuit. In the low-frequency limit, ! ⌧ 1/⌧ , the vortic-
ity circuit acts like an inductor with e↵ective negative
inductance Lv = �CvR2. Impedance measurements of
the circuit in the low-frequency regime could pave a way
to probe the strength of the coupling between vortex and
charge currents. Similar impedance measurements on
helical-spin magnets have been performed to characterize
the current-driven dynamics of spin-helix structures [65].
Energy storage and e�ciency.—In addition to provid-

ing a means to measure ⇣, the setup depicted in Fig. 2
may also function as a battery. Operation of the battery
requires a mechanism to switch the vortex conductivity
between the conducting and insulating regimes, allow-
ing the battery to alternate between (dis)charging and
storing energy, respectively. The vortex transport param-
eters could be very sensitive and may be modulated, for
example, by heating and cooling the magnet [20, 57].
To charge the battery, we electrically bias vortex flow

along z, building up azimuthal spin winding so the magnet
accumulates exchange energy. Discharging the battery
is the reverse process wherein a vortex current induces
an electromotive force on the electric circuit, which may
be extracted as energy. The exchange energy is stored
by lowering the vortex conductivity, so vortex transport
parameters enter the insulating regime. Once in the in-
sulating regime, the amount of winding we can stabilize
is governed by the Landau criterion, since the magnetic
bulk cannot host an arbitrarily sharp texture [19, 66].
The easy-surface anisotropy (⇠K) protects the topologi-

cal spin texture by energetically preventing “phase-slip”
events during which the magnetic order parameter un-
winds [67]. Thus, easy-surface anisotropy determines the
maximal energy storage capacity, which is saturated when
winding texture energy [⇠A(D`')2] is comparable to K.

The charging and discharging e�ciencies may be used
to characterize the battery. In the vortex conducting
regime, we charge the battery relative to its ground state
by supplying a dc electric current I0 for duration ⌧ . By
tuning Rv, we can switch to the vortex insulating regime
to store the energy in the winding capacitor. The charging
e�ciency ⌘c is the ratio of the stored energy to the total
energy supplied by the electric circuit. We extract the
stored energy by connecting the battery to a load resistor
RL, then switching back to the vortex conducting regime
to discharge. The discharging e�ciency ⌘d is the ratio of
energy consumed by RL to the energy leaving the winding
capacitor.
Neglecting the self-inductance L, the e�ciencies are

⌘c =
1

2

(1� e�1)2

Zv
�1 + e�1

, ⌘d =
1� �

1 + (Zv�)�1
, (12)

written with � = RL/(RL+R) and Zv ⌘ ⇠/(1�⇠), where
⇠ = R2/RRv. Here, we define the charge-vortex figure
of merit Zv by analogy to the thermoelectric figure of
merit ZT [68–70]. Whereas for the thermoelectric e↵ect,
heat and charge currents are coupled, in this setting, we
cross-couple vortex and electric currents. Since Zv is a
monotonic function of ⇠, optimizing the system geometry
to maximize ⇠ ⇠ adw�2

F sin4 ✓ cos ✓/hr3� maximizes Zv

and, hence, the e�ciencies. Here, d is the electron mean
free path and a is the lattice spacing. Zv is improved by
decreasing r, thinning the membrane and the metal wire
by decreasing � and h, or enlarging the metal-magnet
interface by increasing w. The optimal helix angle is ✓ ⇡
63�, which balances maximizing Iv and minimizing energy
lost due to Joule heating. In the maximal e�ciency limit,
Zv ! 1, the e�ciencies simplify to ⌘c = (e� 1)2/2e and
⌘d = 1� � for (dis)charging times of t = ⌧ . Furthermore,
in the short charging time limit of t/⌧ ! 0, while still
having Zv ! 1, the charging e�ciency saturates as
⌘c ! 1.

Higher-dimensional generalization.—Topological hydro-
dynamics may be formulated using di↵erential forms for
static manifolds and is extendable to higher dimensions.
For an n-dimensional orientable manifold, the integral of
an (n� 1)-form ⇢̃w over the (n� 1)-dimensional bound-
ary of a patch of the manifold is conserved. The density
n-form ⇢̃v and the flux 1-form j̃v are derived from ⇢̃w
by invoking Stokes’ theorem. We define ⇢̃v as the exte-
rior derivative of ⇢̃w, yielding ⇢̃v = d⇢̃w. Applying the
Hodge star map [36, 58] and taking the time derivative of
both sides, ⇢̃v = d⇢̃w is recast as the continuity equation
?@t⇢̃v + ?d ? j̃v = 0, where j̃v = (�1)n ? @t⇢̃w. Returning
to the 2-dimensional membrane, Q in Eq. (5) is written

the effective dimensionless parameter, 
which is thermodynamically bounded to 
[0,1], is formally analogous to the 
thermoelectric figure of merit called ZT
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Ẇ =

Z
dl ⌧ ·m⇥ @tm / T IIvspin-transfer input power:

<latexit sha1_base64="J3ZXNgT8y8T9rP7ixdcNLbRjhkk=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwVZPia+Gi4MZlLX1BE8tkOmmHTjLDzKRYQldu/BU3LhRx6ze482+ctFlo64ELh3Pu5d57fE6JVLb9beSWlldW1/LrhY3Nre0dc3evKVksEG4gRplo+1BiSiLcUERR3OYCw9CnuOUPb1K/NcJCEhbV1ZhjL4T9iAQEQaWlrnnoPhCXC8YVc0OoBoGAw6Q+uS+f1mrdUdcs2iV7CmuROBkpggzVrvnl9hiKQxwpRKGUHcfmykugUARRPCm4scQcoiHs446mEQyx9JLpGxPrWCs9K2BCV6Ssqfp7IoGhlOPQ153pqXLeS8X/vE6sgisvIRGPFY7QbFEQU0sxK83E6hGBkaJjTSASRN9qoQEUECmdXEGH4My/vEia5ZJzUTq/OytWrrM48uAAHIET4IBLUAG3oAoaAIFH8AxewZvxZLwY78bHrDVnZDP74A+Mzx+tEJk8</latexit>

⇠ / T2/RRv



Dynamics of collective order-parameter textures can have robust low-energy behavior 
rooted in topological conservation laws and responsive to geometric controls

Spin-based systems are abundant, versatile, and amenable to the wealth of spintronic tools

This can lead to new strategies for probing materials as well as applications, such as 
energy storage and nontraditional computing (both classical and quantum)

Myriad connections across different fields of physics, from astrophysics to turbulence

On the quantum front, intriguing outlooks concern direct transport probes of condensed-
matter dualities (e.g., vortex condensation at the superfluid-insulator transition), interplay 
between real-space and momentum-space topologies, and integration with optically-active 
quantum impurities for sensing and generation of quantum entanglement

Outlook


