Energy, geometry, and topology of collective magnetic dynamics

Yaroslav Tserkovnyak (UCLA)

So Takei (CUNY), Se Kwon Kim (KAIST), Hector Ochoa (Donostia), Ricardo Zarzuela (Mainz), Pramey Upadhyaya (Purdue), Benedetta Flebus (Boston), Ji Zou (Basel), Suzy Zhang (Max Planck/Dresden), Chau Dao (UCLA), and Eric Kleinherbers (UCLA)

Bacterial motility

individual cell movement in liquid environments

- Bacterial ability to swim using metabolic energy
- Each single flagellum (helical appendage) has a rotary motor at the base that can turn clock- or anticlockwise
- Small Reynolds number: Viscosity-dominated hydrodynamics; thus, continuous transduction of chemical into mechanical energy

Macroscopic mobility strategies

 Inertia dominated: Typically imparting momentum to the fluid by discrete events, such as vortex shedding, with inertial coasting in between

E. M. Purcell: "Fast or slow, it exactly retraces its trajectory and it's back where it started." [without inertia]

From evolution to "intelligent" design

- Conversion of featureless electrochemical free energy into dynamic macroscopic configurations
- Geometry is exploited to enable desired process via the reduction of structural symmetries

 l_m

- Enable magnetic transport phenomena via geometry
- Utilize topology of collective spin textures to transduce and store free energy
- Interface with (thermo)electric input/output

Pierre Curie: "Asymmetry creates the phenomenon"

The energy-storage concept

- How to inject/extract such winding in practice?
- Controlling symmetries: Heterostructure design vs curved geometry
- Thermodynamic efficiency of the cross-talk between winding dynamics and electricity?

YT and Xiao, PRL (2018)

An appealing approach

If we establish practical means to push vorticity within a 2D system, winding would build up in the transverse direction (cf. phase slips in 2D superfluids)

Vorticity-winding transmutation

net integrated vorticity is naturally conserved

topological charge Q labels winding homotopy classes in the strongly-ordered XY limit

Geometry-enabled topological energy storage

spin-transfer input power:
$$\dot{W} = \int dl \, \boldsymbol{\tau} \cdot \mathbf{m} \times \partial_t \mathbf{m} = \Re II_v$$

In this geometry, electric current along the spiral generically drives vorticity flow along the cylinder axis (thus building up uniform transverse winding)

Dao, Zou, Kleinherbers, and YT, arXiv (2023)

$$\xi = \Re^2 / RR_v$$

electron-vortex "cooperativity" the effective dimensionless parameter, which is thermodynamically bounded to [0,1], is formally analogous to the thermoelectric figure of merit called *ZT*

Onsager description of the magnetic energy storage

• Vortex and electron fluxes cross-couple via Magnus-like friction:

$$\left(\begin{array}{c}V\\V_v\end{array}\right) = \left(\begin{array}{cc}R&\mathfrak{R}\\-\mathfrak{R}&R_v\end{array}\right) \left(\begin{array}{c}I\\I_v\end{array}\right)$$

• The magnetic annulus acts as a winding capacitor:

$$E_v = \frac{Q_w^2}{2C_v} \qquad \qquad I_v = \frac{dQ_w}{dt}$$

 It is tempting to think of devices where a tunable vortex conductivity (e.g., associated with their binding and/or defect pinning) is utilized as a switch

The vorticity is robust against quantum fluctuations

• Vorticity per plaquette is given by the (z component of the) vector chirality: quantum version of the winding around the plaquette

$$\rho_{ij} = \frac{\mathbf{z} \cdot \mathbf{c}_{ij}}{2\pi a^2} \qquad \text{where} \qquad \mathbf{c}_{ij} \equiv \frac{1}{S^2} \sum_{l} \mathbf{S}_{l} \times \mathbf{S}_{\tilde{l}}$$

For smooth classical textures, this reproduces the previous continuum version

YT, Zou, Kim, and Takei, PRB (2020)

A new promising materials platform: Mn₃Sn(Ge)

Antiferromagnetic Weyl semimetal with planar (octupolar) spin texture free to rotate within the easy plane

Liu and Balents, PRL (2017)

Nernst measurement of a domain-wall motion subjected to a magnetic field

Otani and Higo, APL (2021)

$|\rightarrow = (|\uparrow + |\downarrow)/2$

Quantum annealing of the Kosterlitz-Thouless transition 213

Observation of topological phenomena in a programmable lattice of 1,800 qubits

 σ_i

Andrew D. King¹*, Juan Carrasquilla², Jack Raymond¹, Isil Ozfidan¹, Evgeny Andriyash¹, Andrew Berkley¹, Mauricio Reis¹, Trevor Lanting¹, Richard Harris¹, Fabio Altomare¹, Kelly Boothby¹, Paul I. Bunyk¹, Colin Enderud¹, Alexandre Fréchette¹, Emile Hoskinson¹, Nicolas Ladizinsky¹, Travis Oh¹, Gabriel Poulin–Lamarre¹, Christopher Rich¹, Yuki Sato¹, Anatoly Yu. Smirnov¹, Loren J. Swenson¹, Mark H. Volkmann¹, Jed Whittaker¹, Jason Yao¹, Eric Ladizinsky¹, Mark W. Joffr, Jeremy Hilton¹ & Mohammad H. Amin^{1,3}

456 | NATURE | VOL 560 | 23 AUGUST 2018

Periodic

∣↓↑↓⟩ |→↑↓) |↑↑↓) $|\uparrow \rightarrow \downarrow\rangle$ l↓↑→ l↓↑↑) ►I↑↓↓) $|\uparrow\downarrow\rightarrow\rangle$ $|\downarrow \rightarrow \uparrow\rangle$ ∣↓↓↑⟩ $|\rightarrow\downarrow\uparrow\rangle$ |↑↓↑) $\psi = \hat{\sigma}_1^z + \hat{\sigma}_2^z e^{2\pi i/3}$ $+\hat{\sigma}_3^z e^$ winding alora

 σ_i^z

 $T < T_{KT}$

vortices bind with antivortices: vorticity insulator

(3)

3D version of vortices: Hedgehogs

• The continuum hedgehog hydrodynamics

$$j^{\mu} = \epsilon^{\mu\alpha\beta\gamma}\partial_{\alpha}\mathbf{n} \cdot (\partial_{\beta}\mathbf{n} \times \partial_{\gamma}\mathbf{n})/8\pi \,, \quad \partial_{\mu}j^{\mu} = 0$$

has a natural quantum underpinning on an arbitrary lattice, in terms of scalar spin chirality: s_{3}

Engineering and imaging hedgehog metamaterials

Creation and observation of topological magnetic monopoles and their interactions in a ferromagnetic metalattice Soft X-ray imaging by Miao's group at UCLA [Rana et al., Nature Nano. (2023)]

Electrical injection (detection) of topological charge δQ

- A nonequilibrium flow of Q must be consistent with crystalline and structural symmetries, Onsager reciprocity, and (1st/2nd) laws of thermodynamics
- In principle, we generally expect such injection to happen for a generic drive (electrical/ microwave/optical etc.), as long as it is not disallowed by symmetries

095, USA

ea is illustrated two metallic a spin-transfer c's reciprocity, l. The voltage pression of the can be used as

^{inskii-Moriy}spin torque by the input current at the left interface:

inerant spin \mathcal{T} into the fight $\mathbf{M}(\mathbf{J} \cdot \nabla)\mathbf{m}$ e force. The drag of spin rictional effects based on teady state and neglecting int $\mathcal{C}_d \equiv I_R/I_L$ reduces to

 $\left(\frac{i\mathcal{P}}{L}\right)^2 \frac{d}{L}$. $\mathbf{M} \propto \mathbf{P}$

mions at the equilibrium, μ y, and σ is the conductivity – matrix between brackets must be to between charge and spin s parameter measuring the ast factor is geometrical, dis the following: On one geffects are more efficient ws; on the other, the drag distance between contacts on charge. The fatter is a

Electrical injection (detection) of vorticity

Energetics (thermodynamics) and symmetries:

- magnetization of the metal contact

- magnetic texture of the insulator

Onsager-reciprocal motive force

$$\dot{W} = \int dy \, \boldsymbol{\tau} \cdot (\mathbf{m} \times \partial_t \mathbf{m}) \rightarrow \eta \, \mathbf{z} \cdot \mathbf{J} \times \mathbf{j}$$

charge current vortex flux
Zou, Kim, and YT, PRB (2019)

Extending to 3D bulk: Hedgehog flow

The 3D hedgehog flow with skyrmionic bulk/boundary correspondence is closely analogous to the 2D vorticity flow with winding bulk/boundary correspondence

PHYSICAL REVIEW LETTERS 125, 267201 (2020)

Editors' Suggestion

Topological Transport of Deconfined Hedgehogs in Magnets

Ji Zou[®], Shu Zhang,^{*} and Yaroslav Tserkovnyak Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

Transport of vorticity on curved surfaces

• Can nontrivial geometry reduce the symmetries enough to allow to drive topological hydrodynamics even in a single magnetic layer?

12.8.5.1.444.1

Planar -

 $H (kA m^{-1})$

🖄 Springer

Hydrodynamics on curved surfaces

 Net topological charge is defined in terms of a winding 1-form (the density is constructed via exterior derivative, utilizing generalized Stokes' theorem):

$$\mathcal{Q} = \int_{\partial \mathcal{S}} \rho_w = \frac{1}{2\pi} \int_{\partial S} d\xi^i \mathbf{m}_{\parallel}^2 D_i \varphi \quad \text{where} \quad D_i \varphi \equiv \partial_i \varphi - \mathbf{e}_1 \cdot \partial_i \mathbf{e}_2$$

in the strongly easy-plane limit:

$$\mathcal{Q} = \mathcal{N} - \frac{1}{2\pi} \int_{\mathcal{S}} d\xi^1 d\xi^2 \sqrt{g} \mathcal{K}$$
 (Mermin-Ho)

Dao, Zou, Kleinherbers, and YT, arXiv (2023)

"Simplified" topological energy storage

spin-transfer input power:
$$\dot{W} = \int dl \, \boldsymbol{\tau} \cdot \mathbf{m} \times \partial_t \mathbf{m} \propto \mathfrak{T} II_v$$

 ${\mathfrak T}$ - (pseudoscalar) "torsion of a curve" (electrical wire), which can effectively (from the symmetry point of view) convert the local geometric normal to the surface into an out-of-plane magnetization

$$V I_v \mathcal{R} \int \mathcal{R} \mathcal{R} \int \mathcal{R} \mathcal{R}$$

the effective dimensionless parameter, which is thermodynamically bounded to [0,1], is formally analogous to the thermoelectric figure of merit called *ZT*

Outlook

- Dynamics of collective order-parameter textures can have robust low-energy behavior rooted in topological conservation laws and responsive to geometric controls
- Spin-based systems are abundant, versatile, and amenable to the wealth of spintronic tools
- This can lead to new strategies for probing materials as well as applications, such as energy storage and nontraditional computing (both classical and quantum)
- Myriad connections across different fields of physics, from astrophysics to turbulence
- On the quantum front, intriguing outlooks concern direct transport probes of condensedmatter dualities (e.g., vortex condensation at the superfluid-insulator transition), interplay between real-space and momentum-space topologies, and integration with optically-active quantum impurities for sensing and generation of quantum entanglement

