From single magnetic adatoms to coupled chains on a superconductor
Magnetic adatoms on a superconductor

Mn adatom on Pb(111)

40 mV, 40 pA

▶ classical spins exchange scatter at a magnetic center:

\[
\epsilon_0 = \frac{E_0}{\Delta_0} = \frac{1 - (JS\pi N_0/2)^2}{1 + (JS\pi N_0/2)^2}
\]

▶ Yu-Shiba-Rusinov states

A.I. Rusinov, JETP Lett. 9, 85 (1969)
Magnetic adatoms on a superconductor

- transport through Shiba states?
- origin of multiple Shiba states?
Magnetic adatoms on a superconductor

- transport through Shiba states?
- origin of multiple Shiba states?
- formation of Shiba bands?
- topological states?
Outline

Single atoms: Mn on Pb(111) and Pb(100)
- Transport mechanisms through Shiba states?
- Multiple Shiba states

Atomic chains: Co on Pb(110)
- Shiba bands and Majorana states?
Impurity induced bound states

- Shiba states of Mn atoms on Nb(111) (T=4 K)

 ![Graph A](image1.png)

 Yazdani et al, Science 275, 1767 (1997)

- Shiba states of Mn atoms on Pb(111) (T=0.3 K)

 ![Graph B](image2.png)

 Ji et al, PRL 100, 226801 (2008)

- Shiba states interpreted in single electron tunneling picture

- Shiba height reflects amplitude of electron/hole Shiba wavefunction
Mn atoms on Pb(111)

- multiple Shiba resonances
- asymmetric peak heights
Mn atoms on Pb(111)

- BCS peaks
- multiple Shiba resonances
- thermally excited Shiba states
Shiba states at different junction conductances

- symmetry of Shiba intensity varies with junction conductance
- intensity cannot be interpreted as density of states

Shiba states at different junction conductances

Low junction conductance:
- single particle current
- tunneling into Shiba state changes occupancy
- relaxation necessary

\[I^S \propto t^2 \Gamma_1 \]

Shiba states at different junction conductances

- sublinear increase of Shiba state conductance at high tunnel rates
- inversion of Shiba intensity

Shiba states at different junction conductances

- Sublinear increase of Shiba state conductance at high tunnel rates
- Inversion of Shiba intensity
- Higher temperatures: crossover at larger tunnel rates
- Thermally activated relaxation

Lifetimes:
- 0.2 ns at 1.2 K
- 6 ps at 4.8 K
Mn/Pb(001)

three Shiba states of Mn atoms

Origin of multiple Shiba states

► characteristic shape of Shiba states resembles d-orbitals

Mn/Pb(111)

- different adsorption sites yield different Shiba splittings
- crystal field splitting

Pb(111): shape and extension of Shiba states

► all degeneracies lifted

► crystal field splitting:

\[\frac{dI}{dV} \text{ maps, } 8.8 \times 8.8 \text{ nm}^2 \]

\[d_{xy}, x^2 - y^2 \]
\[d_{xz}, yz \]
\[d_{z^2} \]

Shape and extension of Shiba states

- maps reflect symmetry of singly occupied states
- extension?

\[
\psi^\pm(r) \propto \frac{\sin(k_F r + \delta^\pm)}{k_F r} \exp \left[-|\sin(\delta^+ - \delta^-)| \frac{r}{\xi} \right]
\]

\[
\epsilon = \Delta \cos(\delta^+ - \delta^-)
\]
Shape and extension of Shiba states

- oscillation with the Fermi wave length / 2
- phase shift between negative and positive energy

$$\psi^\pm(r) \propto \frac{\sin(k_F r + \delta^\pm)}{k_F r} \exp \left[-|\sin(\delta^+ - \delta^-)| \left| \frac{r}{\xi} \right| \right]$$

- anisoptric scattering due to anisotropic Fermi surface
- identification of Fermi sheet

Outline

- Single atoms: Mn on Pb(111) and Pb(100)
 - Transport mechanisms through Shiba states?
 - Multiple Shiba states

- Atomic chains: Co on Pb(110)
 - Shiba bands and Majorana states?
Toy model: Kitaev chain

1D chain of atomic sites

- single Majorana operators at the chain ends

- conditions for the topological state:
 - spin-less bands along the chain
 - superconductivity within the chain
Transition metal chains on Pb(110)

- Concept:
 - Couple a ferromagnetic chain to a superconductor with spin-orbit coupling

- p-wave superconductivity by proximity

- Transition metal chains on Pb(110)
Sub-gap structure in Fe chains

Nadj-Perge et al., Science 346, 6209 (2014):

- Peak at zero bias
- Localized at chain end
- Interpretation as Majorana states
- Topological gap 200-300 µeV
Sub-gap structure in Fe chains

Nadj-Perge et al., Science 346, 6209 (2014):

- Peak at zero bias
- Localized at chain end
- Interpretation as Majorana states
- Topological gap 200-300 µeV
Co chains on Pb(110): ferromagnetism

- check for ferromagnetism with spin-polarized tips
- spin-polarized d-bands
- ferromagnetic coupling

Co chain on Pb(110): Shiba bands

check for Shiba bands with spin-polarized tips

spin-polarized Shiba-bands

Co chains on Pb(110)

► check for superconductivity within the chain

► signatures for a topological gap observed?

Co chains on Pb(110): high resolution subgap structure

- peaks/shoulders close to zero energy
- chains look similar: 2.5-9.4 nm length

Co chains on Pb(110): localization of states

► Conductance maps

5 mV 1.36 mV 1.45 mV 1.70 mV 1.93 mV 2.31 mV 2.69 mV

zero-energy

► Homogenous distribution of zero-energy signal
 ► No sign of Majorana modes
 ► Why are Fe and Co different?

Band structure of Co chains

without spin-orbit coupling

with spin-orbit coupling

► # crossings at E_F:

Fe could have *odd* number of Fermi points

Co could have *even* number of Fermi points
Conclusions

- Two transport mechanisms through Shiba states:
 - Single electron tunneling
 - Resonant Andreev reflections
 - Thermal relaxation from Shiba states

- Shiba states of single atoms:
 - d-level character

- Rich subgap structure on proximity coupled chains
 - Co chains do not show localized zero-energy modes
Thanks!

Gelavizh Ahmadi, Laetitia Farinacci, Marc Font Gual, Nino Hatter, Benjamin Heinrich, Nils Krane, Eva Liebhaber, Christian Lotze, Olof Peters, Gael Reecht, Daniela Rolf, Michael Ruby, Lisa Rütten, Max Weigand, Asieh Yousofnejad

Yang Peng, Falko Pientka, Felix von Oppen