

Karlsruhe Institute of Technology

Institute for Theoretical Condensed Matter Physics Karlsruhe Institute for Technology Wolfgang-Gaede-Str. 1 D-76131 Karlsruhe http://www.tkm.kit.edu

Strong non-equilibrium effects in spin-torque systems

Tim Ludwig (KIT), Igor Burmistrov (Landau Inst.), Yuval Gefen (Weizmann Inst.), Alexander Shnirman (KIT)

Introduction

We consider a mono-domain ferromagnetic nano-particle in the Stoner regime, which is being driven by spin-transfer torque (STT). We concentrate on the simplest case of a unique stable direction of magnetization at equilibrium. Such systems being driven by STT are known to exhibit persistent precession of magnetization as originally predicted in Refs. [1, 2] and experimentally observed in Ref. [3]. This situation is analyzed in Ref. [4] under the assumption of strong internal spin- and energy-relaxation, which induces an equilibrium distribution on the nano-particle. In contrast, we investigate the limit of vanishing internal energy and spin relaxation, in which the electron distribution function of the nano-particle is driven far from equilibrium. We consider the effect of this non-equilibrium state of the electrons on the semiclassical dynamics of magnetization and voltage. To do so, we derive an SU(2) [magnetization] \otimes U(1) [voltage] Ambegaokar-Eckern-Schön (AES) effective action. In particular, we observe the absence of the regime of persistent precession.

Equations of motion and zero-mode equation

Landau-Lifshitz-Gilbert equation:

$$\frac{d\mathbf{M}}{dt} = -\mathbf{B} \times \mathbf{M} - \alpha(\theta) \frac{\mathbf{M}}{M_0} \times \frac{d\mathbf{M}}{dt} + \frac{1}{S} \frac{\mathbf{M}}{M_0} \times (\mathbf{I}_s \times \mathbf{M})$$

Kirchhoff's law:

$$C\dot{V}_d = I_l - I_r$$

Gilbert dissipation coefficient: $\alpha(\theta) = \frac{1}{S}(\tilde{g}_{l}(\theta) + \tilde{g}_{r})$ Spin-torque current: $I_s = g_s(V - V_d) + \Delta I_s(\theta_0)$

disregarding the right lead and non-eq. effects we obtain known results [4, 8]

$\cos \theta_0$	ΛI_l .	

Magnetic quantum dot coupled to two leads

universal Hamiltonian for the dot [5]:

$$H_{dot} = \sum_{\alpha,\sigma} \epsilon_{\alpha} a^{\dagger}_{\alpha,\sigma} a_{\alpha,\sigma} - BS - JS^2 + E_c(N - N_0)^2$$

$$\begin{split} \mathbf{N} &= \sum_{\alpha,\sigma} \, \mathbf{a}_{\alpha,\sigma}^{\dagger} \mathbf{a}_{\alpha,\sigma} \\ \mathbf{S} &= \frac{1}{2} \sum_{\alpha,\sigma_{1},\sigma_{2}} \, \mathbf{a}_{\alpha,\sigma_{1}}^{\dagger} \, \boldsymbol{\sigma}_{\sigma_{1},\sigma_{2}} \, \mathbf{a}_{\alpha,\sigma_{2}} \end{split}$$

lead- and tunneling-Hamiltonian $H_{\textit{left}} = \sum_{\gamma\sigma} (\epsilon_{\gamma} - M_{\text{fix}} \frac{\sigma}{2} + V) c_{\gamma,\sigma}^{\dagger} c_{\gamma,\sigma} + \sum_{\gamma\alpha\sigma} \left(t_{I,\alpha,\gamma} a_{\alpha,\sigma}^{\dagger} c_{\gamma,\sigma} + h.c. \right)$ $H_{\textit{right}} = \sum \epsilon_{\tilde{\gamma}} c^{\dagger}_{\tilde{\gamma},\sigma} c_{\tilde{\gamma},\sigma} + \sum \left(t_{r,\alpha,\tilde{\gamma}} a^{\dagger}_{\alpha,\sigma} c_{\tilde{\gamma},\sigma} + h.c. \right)$

Action and transition to rotating frame

Decoupling of the interaction and integration over fermionic fields \rightarrow action for Hubbard-Stratonovich fields:

Charge currents: $I_l = 4g_l(V - V_d) - g_s \sin^2 \theta \,\dot{\phi} + \Delta I_l(\theta, \theta_0)$ $I_r = 4g_r V_d + \Delta I_r(\theta, \theta_0)$

 $\Delta I_s(\theta_0), \Delta I_l(\theta, \theta_0), \Delta I_r(\theta, \theta_0)$ are significant current-modifications due to the strong non-equilibrium character of the distribution function

zero-mode equation:

 $CV_d^0 = -\frac{i}{2} \operatorname{tr} \left[G_d^K \right] - N_0$

 V_d^0 is determined by capacity and excessive charges

Stationary solutions and stability

 $\Delta I_{l}(\theta, \theta_{0}), \Delta I_{r}(\theta, \theta_{0})$ eliminate V_{d}^{0} from the equations of motion calls for a separate equation that determines V_d^0

"stationary" solutions: $B_0 \simeq B$ $0 = \sin \theta_0 \left| \alpha(\theta_0) B + \frac{g_s}{S} (V - V_d^0) + \frac{\Delta I_s(\theta_0)}{S} \right|$

The non-equilibrium current $\Delta I_s(\theta_0)$ shifts all the θ_0 -dependence to a prefactor

$$i\mathcal{S}_{\mathbf{M},V_d} = \operatorname{tr}\ln\left[-i\left(G_{d,0}^{-1} + \mathbf{M}\frac{\sigma}{2} - V_d - \Sigma\right)\right] - i\oint_{K} dt \frac{(\mathbf{M} - \mathbf{B})^2}{4J} + i\oint_{K} dt \left(\frac{V_d^2}{4E_c} + V_d N_0\right)$$

Euler angle rep.: $R = e^{-i\frac{\phi}{2}\sigma_z}e^{-i\frac{\theta}{2}\sigma_y}e^{i\frac{\phi-\chi}{2}\sigma_z}$ Rotation [SU(2)]: $\mathbf{n}\boldsymbol{\sigma}=\boldsymbol{R}\sigma_{z}\boldsymbol{R}^{\dagger}$ Berry Phase: $Q = -iR^{\dagger}\dot{R} = [\dot{\phi}(1 - \cos\theta) - \dot{\chi}]\frac{\sigma_z}{2} + Q_{LZ}$ $e^{-i\psi}$ U(1) gauge-trafo: $i\mathcal{S}_{\mathbf{M},V_d} = \operatorname{tr}\ln\left[-i\left(\underbrace{\mathcal{G}_{d,0}^{-1} + \frac{M_0}{2}\sigma_z}_{Q=1} - Q + (\dot{\psi} - V_d) - U^{\dagger}\Sigma U\right)\right] - i\oint_{\mathcal{K}} dt \,\frac{(\mathbf{M} - \mathbf{B})^2}{4J} + i\oint_{\mathcal{K}} dt \,\left(\frac{V_d^2}{4E_c} + V_d N_0\right)$

Gauge fixing [6]: choose ψ and χ such that the effect of $(\psi - V_d)$ and Q is minimized, the boundary conditions give rise to non-gaugeable zero-modes [7]

Expansion around stationary trajectories

Split the U-rotated self-energy term $U^{\dagger}\Sigma U$ into a saddle-point part and the deviation $\langle \rangle$ \sqrt{q} \mathbf{O}

$$i\mathcal{S}_{\mathbf{M},V_{d}} = \operatorname{tr}\ln\left[-i\left(\tilde{G}_{d,z}^{-1} - \tilde{U}_{sp}^{\dagger}\tilde{\Sigma}\tilde{U}_{sp} - \frac{Q_{q}}{2}\tau_{0} + \frac{V_{d0}}{2}\tau_{0} - \left(\tilde{U}^{\dagger}\tilde{\Sigma}\tilde{U} - \tilde{U}_{sp}^{\dagger}\tilde{\Sigma}\tilde{U}_{sp}\right)\right)\right] + i\int dt \frac{\mathbf{B}\mathbf{M}_{q}}{2J} + i\int dt \left(\frac{V_{d}^{c}V_{d}^{q}}{2E_{c}} + V_{d}^{q}N_{0}\right)$$

Trial saddle point $ilde{U}_{sp}
ightarrow U_0$: Kinetic equation: **Green's functions:** \implies persistent precession $\left(\tilde{G}_{d,z}^{-1} - U_0^{\dagger}\tilde{\Sigma}U_0\right)\left(\begin{array}{cc}G_d^{\kappa} & G_d^{R}\\G_d^{A} & 0\end{array}\right) = \mathbf{1} \qquad G_d^{R/A} = \frac{1}{\epsilon - \epsilon_\alpha - (M_0/2)\sigma \pm i\Gamma_\sigma(\theta_0)}$ $\theta \rightarrow \theta_0, \, \dot{\phi} \rightarrow -B_0, \, V_d \rightarrow V_d^0$ $G_d^K = G_d^R F_d - F_d G_d^A$

$$0 = \frac{\sin \theta_0 \ \alpha(\theta_0)}{\Gamma_{\Sigma}^2 - \cos^2 \theta_0 \Gamma_{\Delta}^2} \left[(\Gamma_{\Sigma}^2 - \Gamma_{\Delta}^2) B + 2\Gamma_{\Delta} \Gamma_r V \right]$$

 \rightarrow Except for a critical voltage V_{sw} , only the poles, where $\sin \theta_0 = 0$, are possible stationary solutions.

relaxation dynamics close to stationary solutions:

$$\delta \dot{\theta} = -\cos \theta_0 \, \alpha(\theta_0) \, \left[B + \frac{2\Gamma_{\Delta}\Gamma_r}{\Gamma_{\Sigma}^2 - \Gamma_{\Delta}^2} V \right] \delta \theta$$
$$C \, \delta \dot{V}_d = -4 \left(g_l + g_r \right) \delta V_d$$

• $\delta\theta$ and δV_d are decoupled • at V_{sw} the poles switch stability • δV_d shows usual RC-relaxation

critical slowing down: When the voltage V approaches the switching voltage V_{sw} , we predict critical slowing down for the dynamics of $\delta\theta$. Analysis of the critical region requires special care, since long living deviations $\delta\theta$ could affect the distribution function.

Summary

We want to emphasize three key results:

- the intimate link between spin-torque current [1, 2] $g_s(V V_d)$ and pumping **current** [8] $-g_s \sin^2 \theta \phi$ is demonstrated, as both effects are derived from a single **AES-like** action
- **state of persistent precession**, usually arising from a balance between dissipation and spin-torque [4], disappears due to strong non-equilibrium modification of the electronic distribution function

non-equilibrium distribution functions

expansion in $\tilde{U}^{\dagger}\tilde{\Sigma}\tilde{U}-\tilde{U}_{sp}^{\dagger}\tilde{\Sigma}\tilde{U}_{sp}$: $iS_{AES} = -\mathrm{tr}[\tilde{G}_d \tilde{U}^{\dagger} \tilde{\Sigma} \tilde{U}]$ \rightarrow dissipation and currents

expansion in Q_q :		
$S_{WZNW} = -rac{1}{2} \mathrm{tr}[G_d^K Q_q]$		
\longrightarrow Berry-phase		

it is important to take both leads into account, even in the limit of very transparent right contact $\Gamma_r \gg \Gamma_I^{\sigma}$ — although the height of the left-contact step tends to zero, the integral weight stays important when the spin-torque becomes large enough to compete with dissipation

References

- J. C. Slonczewski, Journal of Magnetism and Magnetic Materials [5] 159, L1 (1996)
- L. Berger, Phys. Rev. B 54, 9353 (1996).
- S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003).
- A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, Phys. [4] Rev. Lett. 101 066601 (2008).
- I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. B 62, 14886 (2000)
- A. Shnirman, Y. Gefen, A. Saha, I. S. Burmistrov, M. N. Kiselev, and A. Altland, Phys. Rev. Lett. 114, 176806 (2015).
- A. Kamenev and Y. Gefen, Phys. Rev. B 54, 5428 (1996). [7]
- Y. Tserkovnyak, T. Moriyama, and J. Q. Xiao, Phys. Rev. B 78, [8] 020401 (2008).

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

