

Magnetomechanical coupling and ferromagnetic resonance in magnetic nanoparticles

Hedyeh Keshtgar¹, Simon Streib², Akashdeep Kamra³, Yaroslav M. Blanter², and Gerrit E. W. Bauer^{2,4} ¹Institute for Advanced Studies in Basic Science, Zanjan, Iran ²Kavli Institute of NanoScience, Delft University of Technology, The Netherlands ³Fachbereich Physik, Universität Konstanz, Germany ⁴Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai, Japan

Introduction

Equations of motion

We address the theory of the coupled lattice and magnetization dynamics of freely suspended single-domain nanoparticles of spheroidal shape.

- motivation: investigation of the importance of the shape anisotropy and the Barnett/Einstein-de Haas effects on FMR spectra, going beyond previous work [2]
- theoretical approach: classical description of the dynamics of macrospin and macrolattice
- magnetomechanical coupling: Barnett field, magnetic anisotropy, and Gilbert damping

Main results

- blueshift of the high-frequency ferromagnetic resonance (FMR)
- new low-frequency satellite peaks with strongly reduced spectral broadening, magnetic and mechanical precessions are locked, thereby suppressing Gilbert damping
- the Barnett effect strongly influences the fine structure of FMR spectra

Outlook

• coupling of the sharp low-frequency modes to rf cavity modes • route to access non-linear, chaotic, or quantum dynamical regimes

• Landau-Lifshitz-Gilbert equation: $\dot{\mathbf{m}} = -\gamma \mu_0 \mathbf{m} \times \mathbf{H}_{\text{eff}} + \boldsymbol{\tau}_m^{(\alpha)}$ effective magnetic field: $\mathbf{H}_{\text{eff}} = -\frac{1}{\mu_0 V M_s} \nabla_{\mathbf{m}} E = \mathbf{H}_B + \mathbf{H}_{\text{ext}} + \mathbf{H}_K + \mathbf{H}_D$ Barnett field: $\mu_0 \mathbf{H}_B = -\Omega/\gamma$, due to the Barnett effect (contained in E_T) Gilbert damping torque: $\boldsymbol{\tau}_{m}^{(\alpha)} = \alpha \left[\mathbf{m} \times \dot{\mathbf{m}} + \mathbf{m} \times (\mathbf{m} \times \boldsymbol{\Omega}) \right]$ • mechanical torque: $\dot{\mathbf{L}} = \frac{VM_s}{\gamma}\dot{\mathbf{m}} + \mu_0 VM_s \mathbf{m} \times \mathbf{H}_{\mathrm{ex}}$ total angular momentum: $\mathbf{J} = \mathbf{L} - V M_s \mathbf{m} / \gamma$ torque on the total angular momentum: $\mathbf{J} = \mu_0 V M_s \mathbf{m} \times \mathbf{H}_{ex}$

Microwave absorption spectra

• nanomagnet in a monochromatic ac field $\mathbf{h}_{\perp}(t) \propto e^{i\omega t}$ • analytic calculation of magnetic susceptibility $\chi(\omega)$ in linear response to $\mathbf{h}_{\perp}(t)$ normal modes: peaks in $\chi(\omega)$ absorbed microwave power: $P = -\frac{\mu_0 V}{2} \omega \operatorname{Im} \left(\mathbf{h}_{\perp}^{*T} \chi \mathbf{h}_{\perp} \right)$ • example 1: iron nanosphere of 2 nm diameter in a static magnetic field $\mu_0 \mathbf{H}_0 = 0.65 \text{ T}$ with Gilbert damping constant $\alpha = 0.01$, easy-axis configuration ($\mathbf{m} \parallel \mathbf{n}$)

Macrolattice and macrospin approximations

• macrolattice approximation: no elastic deformations of the lattice • macrospin approximation: $\mathbf{M} = M_s \mathbf{m}$ (position independent), with $|\mathbf{m}| = 1$ valid for nm sized particles due to adiabatic decoupling of spin and lattice waves • suppression of thermal fluctuations of the magnetization (numbers: Fe sphere, radius R) - with respect to the lattice: $T < T_B \sim K_A V / (25k_B) = 11 (R/nm)^3 K$ - with respect to the static field \mathbf{H}_0 : $(VM_s\mu_0|\mathbf{H}_0|)/(k_BT) = 520 \left(\frac{R^3\mu_0|\mathbf{H}_0|T^{-1}}{\mathrm{nm}^3 \,\mathrm{T} \,\mathrm{K}^{-1}}\right)$

Coordinate systems and configurations

• lab frame: x, y, zbody frame: x_b, y_b, z_b • orientation of the spheroid: θ, ϕ, ψ main axis of the spheroid:

• example 2: iron nanodisk (2 × 15 nm) in a static magnetic field $\mu_0 \mathbf{H}_0 = 0.25 \text{ T}$ with Gilbert damping constant $\alpha = 0.01$, easy-plane configuration $(\mathbf{m} \perp \mathbf{n})$

Characterization of the normal modes

Energy of the nanomagnet

 $E = E_T + E_Z + E_K + E_D$

 $E_T = \frac{1}{2} \mathbf{\Omega}^T \mathcal{I} \mathbf{\Omega}$ = rotational kin. energy with angular frequency $\mathbf{\Omega}$ and inertia tensor \mathcal{I} $E_Z = -\mu_0 V \mathbf{M} \cdot \mathbf{H}_{\text{ext}} = \text{Zeeman energy in external field } \mathbf{H}_{\text{ext}} = \mathbf{H}_0 + \mathbf{h}_{\perp}(t), \ \mathbf{h}_{\perp} \perp \mathbf{H}_0$ $E_K = K_1 V(\mathbf{m} \times \mathbf{n})^2$ = magnetocrystalline anisotropy energy $E_D = \frac{1}{2} \mu_0 V \mathbf{M}^T \mathcal{D} \mathbf{M} = \text{magnetostatic self-energy with demagnetizing tensor } \mathcal{D}$

• high-frequency FMR: counterclockwise precession of **m** blueshift ~ $\omega_c = M_s V/(\gamma I_\perp) = 492 (\text{nm}/R)^2$ MHz, for Fe sphere • low-frequency modes: lattice orientation \mathbf{n} and magnetization \mathbf{m} are locked easy-axis ($\mathbf{m} \parallel \mathbf{n}$): clockwise and counterclockwise precession easy-plane $(\mathbf{m} \perp \mathbf{n})$: oscillation about the axis perpendicular to the \mathbf{m},\mathbf{n} -plane • Barnett effect: increase of the blueshift of the FMR by a factor of ~ 2 change of the position of the low-frequency modes

References

[1] H. Keshtgar, S. Streib, A. Kamra, Y. M. Blanter, G. E. W. Bauer, arXiv:1610.01072. [2] N. Usov and B. Y. Liubimov, J. Magn. Magn. Mater. **385**, 339 (2015).