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Introduction
•Wave propagation in random media: interference
leads to deviations from classical diffusion (e. g. lo-
calization phenomena)

•Classical transport: phase information lost at scatter-
ing events

•Coherent transport: multiscattering interference ef-
fects, e. g. Anderson Localization (AL) [1]

•AL is ubiquitous for wave transport (experimentally
proven for electron gases, ultrasound, microwaves,
light waves, matter waves) and should also exist for
spin waves.
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Modeling spin waves

•Atomistic spin model with Heisenberg
Hamiltonian

H =−
1

2

∑

n,m

[JSn·Snm +Dm· (Sn×Snm)]

− dz
∑

n

(Sn
z )

2 − µS

∑

n

BnSn

•Time evolution given by Landau-Lifshitz
equation (LL)

∂Sl

∂t
= −

γ

µS
Sl ×Hl

with effective field: Hl = −∂H
∂Sl.

Defects:

• For AL a disordered potential is needed. Possible defect models are:

–magnetic field: apply constant B at random lattice sites

– zero spins: set spin S = 0 at random lattice sites.

Numerical treatment of model:

• LL solved numerically using common ODE methods (e. g. Heun or implicit Adams) [2].

Localization phenomena

Strong localization (also called AL):
•Complete suppression of wave transport, diffusion
constant D = 0

•Exponential decay of wave intensity with distance on
length scale of localization length ξloc:
I ∝ exp (−|x−x0|/4ξloc)

• Further possible features, e. g. coherent forward scat-
tering (CFS) [3, 4]

a

b

z

J. Billy et al. Nature 453, 891–894 (2008)

Weak localization:

•Regime where transport is not yet completely sup-
pressed, but there are deviations from classical be-
havior (e. g. coherent backscattering (CBS)).

•Precursor for AL
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Dispersion relation of spin waves

• Localized spin wave at position r0 with wave
vector k0 and width σ is given by
S l := Sl

x − i · Sl
y = A · exp (−ik0 · r)

· exp
(

−(r−r0)
2

/2σ2

)

.

•Dispersion of spin waves:

ω(k) =
γ

µS

[

J
∑

m

(1− cos(k·am)+Dm
z sin (k·am))

+ 2dz

]

, am lattice vectors

Coherent backscattering in 2D (Dm = 0)

•The elastic scattering leads to incoherent (dif-
fusive) and coherent parts of intensity:
I(k) = Ibg(k) + ICBS(k).

•CBS contrast C = Ibg(−k0)/ICBS(−k0) is unity for
pure plane-wave.

•Theoretical prediction for time evolution of
CBS contrast of finite width (linear waves) [6]:

C(t) =
(

1 + |v(k0)|
2 τtr∆k2 · t

)−1

v(k): group velocity, τtr: transport time

•Nonlinearities (larger amplitude A) lead to
faster decay of CBS contrast.

• Finite Gilbert damping α (using LL-Gilbert
equation) reduces overall intensity I , but not
contrast. (All modes damped uniformly.)

time t = 20 γJ/µS
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CBS in 2D with DMI
Dzyaloshinskii-Moriya interaction (DMI):
•weak DMI: |Dm| < 0.1J , for ferromagnetic
ground state

• breaks inversion symmetry ω(k) = ω(2K −
k) 6= ω(−k), K: center of inversion

Effect on CBS:

•CBS contrast not effected

• position of CBS peak: kCBS = 2K − k0, espe-
cially −k0 ∦ kCBS

Explanation:

•CBS contribution described by Cooperon dia-
gram C, that is only equivalent to a ladder di-
agram L, if ω(k0 + k− qn) = ω(qn), which is
achieved by k0 + k = 2K

C(k0,k) =

k0
{qn} k

k0 {k0 + k− qn} k

, L(k0,k) =

k0
{qn} k

k0 {qn} k
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Coherent forward scattering in quasi 1D systems

•CFS: interference peak at k0 position, in contrast to CBS strong
localization feature

•CFS peak arises on Heisenberg time scale [3] τH =
h 〈DOS(E(k0))〉 ξ

d
loc, where 〈DOS(E(k0))〉 is the ensemble av-

eraged density of states per unit volume

•CFS peak has same height and width as CBS peak in long time
limit.

Studied here:

• quasi one-dimensional system (Nx ≫ Ny = 21), Dm = 0
→ local scattering is two-dimensional, but much smaller ξloc

• localization length in x-direction: ξloc = Ny · ξ
1D
loc

• estimation of τH ≈ 2π · DOS(ω(k0)) ·Nyaξloc ≈ 1× 103 µS

γJ

• estimate 〈DOS(E(k0))〉 with DOS of system without defects
(only valid for weak disorder) → estimation for τH to small, but
gives right order of magnitude
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