Exchange magnon spin transport in the magnetic insulator yttrium iron garnet

Ludo Cornelissen
Jing Liu
Juan Shan
Timo Kuschel
Kevin Peters
Gerrit Bauer
Rembert Duine
Jamal Ben Youssef
Bart van Wees
Magnon Spintronics

Magnon spintronics, at GHz frequencies

Connecting magnonics and spintronics, without frequency selection
Exciting magnons by spin-flip scattering

- Localized magnon injection (at Metal|YIG interface)
- Spin accumulation generates magnon accumulation
- Linear process

Conduction electron spin-up -> spin-down + magnon

Spin-down + magnon -> spin-up
Non-local experiment

Electrical magnon injection

Current I is AC
Measure $V(\omega)$

Linear regime
Non-local resistance

: $I(\omega) = A \sin \omega t$
: 1st harmonic $V(1\omega) \propto I$
: 2nd harmonic $V(2\omega) \propto I^2$
: $V \propto I$
: $R_{nl} = \frac{V}{I}$
Devices

Long distances
2.5µm < d < 160µm
Device length 100µm

Short distances
200nm < d < 5µm
Device length 12.5µm

Pt
Ti/Au
Electrical magnon generation

Injector: μ^\parallel generates magnons $\rightarrow \cos \alpha$
Detector: μ_d contributes to $V_c \rightarrow \cos \alpha$
1ω signal is product of the two: $\cos^2 \alpha$
Distance dependence

1D spin diffusion equation:
\[\frac{d^2 n_m}{dx^2} = \frac{n_m}{\lambda^2} \]

+ B.C. yields:
\[R_{\text{non-local}} (d) = \frac{A}{\lambda} \cdot \frac{\exp(d/\lambda)}{1-\exp(2d/\lambda)} \]

\[\lambda = 9.4 \pm 0.6 \ \mu m \]

Relaxation regime -> exponential decay
Diffusive regime -> 1/d decay
Parameters of the magnon system

Does not work!

- κ_m several orders of magnitude too small
- λ_{m-ph} several orders of magnitude too small

*J. Xiao et al., PRB 81, 214418 (2010)
Magnon chemical potential

> Out of equilibrium parameters for the system
 - μ_m
 - T_m

> Conservation of magnon number (μ_m)
 - Timescale limited by magnon-relaxation

> Conservation of energy (T_m)
 - Timescale limited by magnon-relaxation and magnon-phonon scattering
Magnon chemical potential

Modeling the experiments

\(\text{Linear response transport theory}^1 \)

\[
\begin{pmatrix}
\frac{2e}{\hbar} j_m \\
\frac{\hbar L}{2e} j_{Q,m}
\end{pmatrix}
= -
\begin{pmatrix}
\sigma_m & L/T \\
\hbar L/2e & \kappa_m
\end{pmatrix}
\begin{pmatrix}
\nabla \mu_m \\
\nabla T_m
\end{pmatrix}
\]

- \(j_m \) Magnon spin current density,
- \(\sigma_m \) Magnon spin conductivity,
- \(L \) Bulk spin Seebeck coefficient,
- \(\mu_m \) Magnon chemical potential,
- \(j_{Q,m} \) Magnon heat current density
- \(\kappa_m \) Magnon heat conductivity
- \(T \) Ambient temperature
- \(T_m \) Magnon temperature
Finite element model

- FEM gives the magnon chemical potential profile

- Find the spin current into the contacts:
 \[j^\text{int}_s = g_s (\mu_m - \mu_s) \]
FEM results

Good agreement with experiments, for electrical generation

However, does not predict YIG thickness dependence of the signal correctly

We extract:

\[\sigma_m = 5 \times 10^5 \text{ S/m} \]
\[g_s = 0.96 \times 10^{13} \text{ S/m}^2 \]
Effect of temperature
Electrical magnon injection

- T-dependence agrees qualitatively with other observations*
- Distance dependence and FEM can be used to find:
 - $\lambda_m(T)$
 - $\sigma_m(T)$

*S.T.B. Goennenwein et al., APL **107**, 172405 (2015)
Vélez et al., arxiv:1606.02968 (2016)
Wu et al., PRB **93** 060403(R) (2016)
$\lambda_m(T)$ and $\sigma_m(T)$

Thermal magnon generation

Temperature gradient causes magnon spin current

\[\left(\frac{2e}{\hbar} \mathbf{j}_m \right) = - \begin{pmatrix} \sigma_m & \frac{L}{T} \\ \frac{\hbar L}{2e} & \kappa_m \end{pmatrix} \begin{pmatrix} \nabla \mu_m \\ \nabla T_m \end{pmatrix} \]

Joule heating in device causes magnon accumulation

Electrical

Thermal
Non-local experiment
Thermal magnon injection

Injection relies on spin Seebeck effect
\[\frac{2e}{\hbar} j_m = -\frac{L_m}{T} \nabla T_m \]

And
\[\nabla T_m \propto I^2 \]

With:
- \(L_m \): bulk spin Seebeck coefficient
- \(T_m \): magnon temperature
- \(j_m \): magnon spin current
Angle dependent measurements: 2ω

- Injector: I^2 generates heat \rightarrow const.
- Detector: μ_d contributes to V_c \rightarrow $\cos \alpha$
- 2ω signal \rightarrow $\cos \alpha$
Electrical vs thermal injection
Long distances

1ω (Electrical)

2ω (Thermal)

$\lambda^{1\omega} = 9.4 \pm 0.6 \, \mu m$

$\lambda^{2\omega} = 8.7 \pm 0.8 \, \mu m$
Model for thermal generation

- Heat current flows outward from detector
- SSE generates magnon spin current
- Magnon current cannot enter GGG
- Magnon accumulation at interface

Electrical vs thermal injection
Short distances

1ω

![Graph showing R_{ni1}^1 vs distance (μm)]

- 1/d decay indicates diffusive transport, for d < λ
- Thermally excited magnons behave differently for d ≈ t_{YIG} -> injector not a localized source for thermal magnons.

2ω

![Graph showing R_{ni2}^2 vs distance (μm)]
Effect of temperature

Electrical vs thermal magnon injection

- Complex T-dependence of 2ω is not yet understood
Summary (I)

- Conversion between charge, electronic spin and magnonic spin currents

 Electrical magnon injection
 Thermal magnon injection

- YIG is a good conductor for diffuse spin currents, long spin diffusion length $\lambda_m = 9.4 \pm 0.6 \mu m$ at low fields and RT
Summary (II)

- Magnon chemical potential is an essential parameter in describing the magnon spin transport.

Temperature dependencies for electrical and thermal injection are completely different, but spin diffusion lengths agree.

1ω

2ω

λ
Thank you!

Bart van Wees
Jing Liu
Juan Shan
Timo Kuschel
Kevin Peters
Rembert Duine
Gerrit Bauer
Jamal Ben Youssef
Technical staff @ PND group

Physics of Nanodevices group